
 Accelerating Module Conditioning
Local application for new Linac

Sep 24, 1992
Introduction

Conditioning the new Linac rf cavities will take hours or days for each
module. This local application is an implementation designed to automate the
procedure so that it can run unattended. The main idea is to slowly ramp the rf
peak forward power from the klystron toward a target value, as long as the
radiation remains below a threshold, taking care to watch the vacuum pressure
and the spark rate, reducing the forward power if either exceeds specified levels,
and resetting any rf system trips. The implementation of the program is the
subject of this note. The user interface is provided by the Parameter Page.

Hardware signals (klystron system 3)
Description Name Units

1. rf peak forward power A/D reading K3WG1P MW

2. rf peak forward power D/A setting " MW

3. vacuum pressure A/D reading (2) V3VP1,V3VP2 V

4. spark digital status bit reading
5. rf "on" digital status bit reading
6. rf interlocks reset digital control bit pulse
7. rf system reset digital control bit pulse
8. clock event status bits

Software parameters
Description Name Units

1. enable status/control bit for this application
2. rf peak forward power target value K3TRGP MW

3. rf peak forward power delta K3DLTP MW

4. time interval delta K3DLTT SEC

5. spark rate threshold K3SPKT %

6. vacuum pressure threshold K3VACT V

7. rf peak power back-off percent K3PPBK %

8. maximum #resets of trips K3MAXT

9. spark rate output value K3SPKR %

10. delay after back-off due
to vacuum K3VACD SEC

11. maximum #sparks to
compute spark rate K3MAXS

12. status bit for program
state 0. Waiting for recovery.

13. control bit to clear
spark-counting statistics counters

Klystron Conditioning Sep 24, 1992 page 2
Local application support

As a local application, the code is called as a Pascal procedure by a special
entry in the Data Access Table of the local station. This entry causes each local
application residing in the system Local Application Table be called by name.
The 4-character name is used to search the CODES table of programs that have
been previously downloaded by name into non-volatile memory. The first
argument of the call is a byte whose value identifies the type of call: 0:

Initialization call. Allocate and initialize static memory used during
the time the local application is enabled.
1: Termination call. Free static memory allocated by Initialization call.
2: (not used)
3: Cycle call. Process with new data in data pool.
4: Network call. Message received for this application.

The second argument is a pointer to the 12-word parameter area of the Local
Application Table entry. The first longword of this area provides storage for the
pointer to the static memory allocated during the Initialization call. The next word
is the enable Bit#, and the remaining words are used for additional parameters,
usually specified as Channel#s and Bit#s. (See the layout for this application in a
later section.) When the enable bit is set, the application is enabled. When it is
clear, the application is disabled. The system notices changes in the state of this
enable bit and schedules Initialization and Termination calls accordingly. When
there is no change in the enable bit, and the bit is set, the application receives a
Cycle call. Special logic is included that provides for automatic replacement to a
new program version as soon as it is downloaded, if the application is enabled. A
local application is downloaded into non-volatile memory but executes out of on-
board ram. A checksum is kept for the downloaded version that is verified each
time an application’s enable bit changes from a 0 to a 1 and its code is copied into
allocated ram for execution.

State flow
Local applications of the closed loop style are typically implemented with

state logic. In this case of the cavity conditioning application, there are two states:
0 and 1. When the application is first enabled, state 0 is asserted. While in state 0,
the application looks for a valid set of readings (both hardware and software)
and also for the rf system to be “on”. Constants in the program are used to assess
whether the values of the hardware and software parameters are within
“reasonable” ranges. Once these conditions are satisfied, the program switches to
state 1.

In state 1, the time delta value is used as a period over which to determine a
maximum value of the rf peak forward power readings. At the end of the time
interval, the maximum is compared with the target value to determine whether

Klystron Conditioning Sep 24, 1992 page 3
The spark rate is checked against the threshold value to decide whether to back
off. Vacuum is always checked against the vacuum threshold to decide whether
to back off. And the rf “on” status is always checked to detect rf system trips.

Statistics are maintained about the relationship between sparks that occur and
the relevant Tevatron clock event signals that indicate what kind of accelerating
cycle was active. Counts of events, sparks occurring on those events, counts of
sparks that occur during which Booster batches, and a histogram of spark
occurrences throughout the supercycle. A self-clearing control bit is provided
that, when set, clears the spark counting statistics.

All software input parameters (except the maximum #trips) can be modified
during normal state 1 operation to take effect after the current time interval. Also,
the peak forward power can be changed manually by knob control even while
the conditioning program is regulating the peak power, as the changes made by
the algorithm are always applied incrementally from the current setting.

A “state 0” status bit is provided as an output so that it can be monitored by the
alarm system to announce when the application is no longer regulating.

Logic details
The response to an rf system trip is to first back off the forward power, reset

the rf interlocks and subsequently to reset the rf system itself. Such resets of rf
trips are limited to repeat no more often than 10 seconds, a program constant.

There are two vacuum readings. The one with the worst reading is used in the
algorithm because only one vacuum pump may be required to be running, and
the reading of a pump which is off appears as “excellent” vacuum. The response
to poor vacuum compared to the vacuum threshold value is to back off the
forward power and delay for the vacuum delay time before allowing another
back-off due to vacuum. This gives the vacuum system time to approach
equilibrium under operation at a reduced peak forward power level.

The spark rate is computed over the number of 15 Hz cycles required to
accumulate the number of sparks specified by the maximum #sparks parameter.
Expressed as a percentage, it is compared against the spark threshold.

When there have been more rf system trips than that given by the maximum
#trips parameter, the application reverts to state 0. Manual recovery of the rf
system will allow a return to state 1 processing with an additional maximum
#trips permitted—assuming nothing else is wrong.

Klystron Conditioning Sep 24, 1992 page 4
source code run in less than 3K bytes.

Parameters layout
The layout of the parameters area of the Local Application entry as viewed by

the Local Application Parameter Page is as follows:

E LOC APPL PARAMS 09/24/92 1711
NODE<0623> NTRY< 5>
NAME=COND CNTR=00F8
TITL"LGAL RF CAV CONDITIONING"
SVAR=00000000
ENABLE B<02A0> COND ENABLE
SPARKS B<019E> REFLECTED POWER
RFONST B<0198> RF ON IS ENABLED
RFINTLK B<015C> INTERLOCK RESET
PPWR C<0480> K3WG1P MW
VACUUM C<049E> V3VP1 V
 <0000>
RFRESET B<0325> SYSTEM RESET
EVENTS B<0230> EVENT 18
OTHERS C<0490> K3TRGP MW

The first parameter word specifies the enable Bit# that must be set to enable the
local application program to run. Setting it to a “1” enables calls to be made to
the application, beginning with the Initialization call. Setting it to a “0” schedules
a Termination call before releasing the program’s execution memory.

This application uses enable Bit#+1 for the “state 0” output bit and enable Bit#+2
for the control bit that clears the spark counters.

The lo byte of the CNTR word is merely a diagnostic count of the number of times
the application code is called. It serves to show evidence of obvious activity
when viewing this entry on a memory page display. The hi byte of the same
word shows the elapsed time required by the last 15 Hz program invocation.

The ptr to the application’s static memory, established as a result of the standard
Pascal New procedure used for dynamic memory allocation, is stored during
Initialization call processing for use during subsequent Cycle call processing.
One can gain some diagnostic insight of the application’s activity by observing
the contents of the memory block pointed to by this address with the Memory
Dump Page application. The first 8 bytes are used for a standard memory block
header. The rest of the block can be matched with the declaration of the static
variable data structure of the application.

The last 9 words are used for hardware Chan and Bit#s. The final word is a base
Chan# of the sequence of Chan#s used for the software application parameters.

 ACNAUX Functions
Acnet utility support

Mar 6, 1992

Introduction
The Acnet standard for task–task communications is widely used in accel

erator control systems at Fermilab. The Acnet task called ACNAUX is designed to
sup port a set of utility functions which can aid diagnosis of Acnet network
nodes in a standard way, as it is independent of the cpu and operating system
used by each node. Each node supports the Acnet header standard; through
ACNAUX each node supports some common diagnostic utility functions. This
note des cribes the support for ACNAUX in the Local Station nodes. The official
document of the standard is described elsewhere by Glenn Johnson.

Each function is specified by the lo byte of the first (or only) word following the
Acnet header of the request message. In some cases the hi byte of this word may
be used as a sub-function code. All functions are one-shot requests.

ACNAUX implementation
In the local station, ACNAUX is implemented by a local application called

AAUX. It uses the generic protocol support available via OpenPro to receive
notification about network messages directed to it. This same support is also
used by FTPMAN, GATE, and HUMBUG. It permits more rapid response than
would be achieved using 15 Hz polling of the message queue. Two of the
available parameter words are used to pass a ptr to the message reference block
that itself includes a ptr to the received request message. The AcReq Task calls
the local application when it receives a message destined for the local application
whose network task name is found in the protocol table, filled by OpenPro calls.

NOOP function 0
This serves as a “ping” facility. It determines if a node will respond to an

Acnet header request message. A status-only reply is returned. A Vax program
called ANPING can be run from a terminal to exercise this function. It includes
the time for the response in 10 msec resolution. A local station which is not busy
can return such a response in 4 msec, which is near the limit of the token ring
chipset that interfaces to the token ring network.

GTTASK function 4
Returns a list of the currently-connected network task names, followed by a

byte array of the associated task-id’s. The AAUX local application examines the
NETCT table contents to find this info. For each entry whose queue id is nonzero,
the task name and id is recorded. Because the format is specified in Vax normal
byte order, it is necessary to swap bytes for all words in the reply.

The byte order of task names used in the local stations was designed to conform

ACNAUX Functions Mar 6, 1992 page 2
system, many task names are in 6-character RAD–50 format, which also takes 4
bytes (two 3-character words). (Recall for the following argument that the token
ring hardware interface on the Vax swaps every byte, in order to make it such
that 2-byte integer words transfer between Vax and token ring stations that use a
“big-endian” architecture without software byte swapping.) To make it possible
for both the Vax and the local station to use 4-character ascii names, the bytes of
the destination task name field of an acnet header are swapped upon reception
by the ANet Task in the local station. ANet then searches for a match with the
current connected task entries in the NETCT net connection table to dispatch the
received message to the proper message queue. When a message is transmitted
by the local station, these bytes are swapped before it gets passed to the chipset
so that the Vax receives them in natural order.

As a result of this logic of preserving 4-char ascii task name communication, the
6-character RAD–50 names must be kept in byte-swapped form in the NETCT

table. Since these names are treated as magic constants by local station software,
this is easy to do. As an example, the task name ACNAUX in RAD–50 form is
$06C609A0 (ACN=06C6, AUX=09A0); but for local station software, it should be
specified as $C606A009, and it appears this way in the NETCT table entry.

Since there can be a mix of 4-character and 6-character formats, it requires some
special logic to convert the names to ascii for display. All 4-character task names
are composed of 4 capital letters in ascii. If a given task name fits this pattern,
then it may be presumed a 4-character form; otherwise, it should be assumed to
be of the 6-character RAD–50 form.

RAD–50 definition
This encoding of a restricted set of characters permits squeezing 3 characters

of information into one 16-bit word. It can be considered simply as a base-40
number system, whose coding scheme is as follows:

0 space 28 .
1–26 A–Z 29 (unused)
27 $ 30–39 0–9

To convert ‘XYZ’ into RAD–50, the result is (25*40 + 26)*40 + 27 = 41067 = $A06B.
GTTRIO function 8

Returns token ring chipset I/O error statistics. The token ring chipset main
tains an error log that is a set of nine 8-bit counters. A special command can be
issued to the chipset to interrogate these counters. An extra motivation for doing
so is provided by the fact that for some error conditions, when the error count
reaches 255, or $FF, the chipset removes itself from the network. This means that
a node on token ring should plan to read this error log on some periodic basis.
The local station software does this, using a default period of about 20 minutes,
currently. The counts are accumulated into a corresponding set of 16-bit counts,

ACNAUX Functions Mar 6, 1992 page 3
Line

Each frame that is received or repeated for a valid FCS or Manchester
code violation. If one is detected, the EDI (Error Detected Indicator) bit is
set to “1” in the frame or token’s ending delimiter. If the received EDI is
“1”, this Line error count is incremented; if the EDI is a “1”, it is not
incremented.

ARI/FCI

This indicates that the up-stream node chipset is unable to set its
ARI/FCI bits in a frame it has received. (The details of this seem rather
obscure to this writer.)
Burst

The chipset has detected the absence of transitions for five half-bit
times between SDEL and EDEL.
Receive congestion

The chipset recognizes a frame addressed to its specific address, but it
has no buffer space available to receive the frame.
Lost frame

When in transmit mode, the chipset fails to receive the end of the
frame it has transmitted.
Frame copied

When in receive/repeat mode, the chipset recognizes a frame that is
addressed to its specific address, but the ARI bits are nonzero, indicating a
possible duplicate address. (The bridge currently causes many of these.)
Token

The Active Monitor detects a frame with the MONITOR COUNT bit set,
no token of frame received within a 10 msec window, or a code violation
in a starting delimiter/token sequence.
DMA parity or DMA Bus

Maybe something wrong with the token ring interface board itself.

GTPKTS function 9
Returns network message packet processing statistics to permit assessment of

a node’s network I/O activity. The time since the network statistics were cleared
is given along with a count of message packets processed either in or out. For the
local station, several resident diagnostic counters are monitored to collect these
statistics. The time period is the time since the AAUX local application was last
initialized, which would normally be at system reset time; however, if AAUX is
updated to a new version, upon download of a new version, the old version is
terminated and the new version is initialized, so the statistics will begin again.
The implementation uses the cycle counter which is a longword that begins at
zero at system reset time and is incremented for every 15 Hz cycle. If a station is
running at the backup 12.5 Hz rate, this value is not corrected for it. When AAUX

is initialized, it captures the present reading of this cycle counter. To reply to a

ACNAUX Functions Mar 6, 1992 page 4
network communications with several protocols. The Classic data request/alarm
pro to col does not use an acnet header. The DZero and Accelerator protocols do
use an acnet header. Each family of protocols must be considered separately.

The Classic protocol uses SAP 18. At present, there is no message counter
accumulated for the Classic protocol messages received, so a frame counter is
monitored as an approximation. In the SAP table, a word counter is incremented
for each SAP 18 frame received. AAUX watches this counter every cycle and
notices changes in it to build a count of Classic frames received. When a message
count is added to the system logic, this code can be updated to use it.

All Acnet-header protocols use SAP 68. Each task name that is connected to the
network is recorded in the NETCT table, and a word counter is incremented for
each message that is received and dispatched by the ANet Task. So AAUX

monitors these counters for all 23 possible entries in NETCT. For each entry that is
active (queue id <> 0) the associated word counter is monitored every cycle for
evidence of counting. Increments are accumulated into the total packet count.

All messages transmitted pass through the OUTPQ network output pointer queue.
There is a word in the OUTPQ header that is incremented for every message that
has been completely transmitted. This word is monitored every cycle and any
increments noticed are accumulated into the total packet count.

All in all, the total packet count is the sum of the number of Classic frames
received (to be replaced by a message count when available), the number of
messages passed to the associated message queue for each connected network
task name, and the number of messages completely transmitted to the network
for any protocol.

Each Linac local station uses Arcnet communications for data acquisition with
the SRMs (Smart Rack Monitors), which usually number 4 or 5 on each Arcnet.
This communication protocol is Acnet-header based and is called locally “#4” to
signify it was the 4th data request protocol to be supported by the local station
system software. This network activity is not part of the token ring network
activity; therefore, even though it represents network processing activity in the
local station, it was not included in the #packets reported in reply to GTPKTS. If it
were, it would typically add 75 packets per second for a station with 4 SRMs. This
includes 1 broadcast transmitted request and 4 replies per 15 Hz cycle.

Viewing the results of these functions
One program that makes use of the GTPKTS function are Vax console page

D31, which polls a large sequence of nodes and reports the total time value and
the number of network packets processed per second between polls. Any node

ACNAUX Functions Mar 6, 1992 page 5
Another program that exercises this function is called PACKETS, accessible from a
VT100 terminal or emulator. It shows the network activity relating to 4 nodes,
with the last one initially set to ADCALC. This last one can be changed to a user
selected node name by typing “!” to get the prompt message that asks for the
node name, such as LIN611, for example. When a user-selected name is entered,
the GTTASK function is issued to request the task list, displayed in a separate box.
Each node is polled approximately every 4 seconds, and statistics are displayed
for the current packet rate, the minimum and maximum rates, and rates that are
averaged over several different time intervals.

The program that uses the GTTRIO function to list the error counters at a VT100

terminal is called TRIO. It prompts for a node name and shows the current
counts obtained via the GTTRIO function and also the time over which the
counts were accumulated. At this time, the CLEAR and NOW and set new
period are not implemented, but they could be so in the future if needed.

Alarm-based Signals
Local application
Wed, Jan 10, 1996

This ASIG local application is designed to support digital control line signals that reflect the alarm
state of analog channels. If a channel is bad, one can assert some digital control signal that is
otherwise de-asserted. One particular case like this that has always been supported is the beam
inhibit control signal. Any analog channel, or binary status bit that is in the alarm scan may have
the optional attribute of causing the beam inhibit signal to be asserted when it is bad. For example,
if a Linac RF gradient is out of tolerance, it is desirable to automatically prevent beam from being
accelerated through the Linac, as it is not good beam anyway. This local application supports the
same service, but applied to other control lines that may be needed to affect equipment in specific
ways.

The parameters of the ASIG local application appear as follows:

E LOCAL APPS 01/10/96 1120
NODE<0614> NTRY<32>/64 H<0508>
NAME=ASIG CNTR=AD DT= 0 MS
TITL"ALARM-BASED CTRL SIGNAL "
SVAR=00000000 01/03/96 1508
ENABLE B<00AA> ASIG ENABLE
SPARE <0000>
CHAN1 C<011C> RF3HV 38.56 KV
C-BIT1 B<0191>*RF3 COMPUTR ENBL
CHAN2 C<031C> RF4HV 38.85 KV
C-BIT2 B<0391>*RF4 COMPUTR ENBL
CHAN3 C<051C> RF5HV 40.27 KV
C-BIT3 B<0591>*RF5 COMPUTR ENBL
CHAN4 C<0000>
C-BIT4 B<0000>

Up to four Channel-Bit pairs may be specified. If the Bit# of a pair is zero, that pair is inactive.
Each pair logically acts independently. If the reading of the specified analog Channel is in alarm (in
the "bad" state) then the specified control Bit# is asserted. The actual state of "asserted" is specified
by the sign bit of the Bit# parameter. In the above example, the asserted state of each of the three
specified controls lines is zero. As long as the RF3 High Voltage reading is in alarm, for example,
the RF3 Computer Enable control signal is set to a zero; otherwise, it is set to a one. (If the reverse
control signal logic had been desired, then the Bit# parameter would have been 8191 rather than
0191.)

Beam Summing
Local application
Fri, Jun 17, 1994

For monitoring long term accumulations of raw data such as beam charge,
it is necessary to do the pulse-by-pulse summing locally, then making the
accumulations available to any host system. This note describes an
implementation for this as a local application.

Parameters layout:
ENABLE B<00C4> BSUM ENABLE

BEAM B<009F> NO BEAM STATUS

OUTADDR <2F00>

CHAN1 C<001B> BEAM ACCUM TEST

CHAN2 C<0000>

CHAN3 C<0000>

CHAN4 C<0000>

The ENABLE Bit# enables operation of the BSUM local application. The BEAM

status Bit# indicates what bit signals the presence of a scheduled beam
pulse of the type summed by this application. The “beam” state is the sign
bit of this parameter. The OUTADDR parameter is a 16-bit address in low
memory where the output results are written. This address should be in an
area that is zeroed at system reset time, in order to start the accumulations
at zero and to signal a reset has occurred. (Consult with an expert to
determine an appropriate address to use.) The rest of the para meters are
analog channel#s whose readings provide the raw data to be summed. A
zero channel# is ignored, but it occupies a “slot” in the output data
structure.

The data structure of the accumulated data is as follows:
sum: ARRAY[1..4] OF Integer; { 4-word sum of beam data }

cnt: ARRAY[1..2] OF Integer; { 2-word sum of beam cycles }

tot: ARRAY[1..2] OF Integer; { 2-word sum of all cycles }

(Here, an “Integer” is a 16-bit word.) For each channel specified, a “slot” of
8 words is used starting at OUTADDR. The SSDN of the Acnet database entry
for the reading property can include this OUTADDR. For example, if the
source node were node 61E, and the base address of the data structure
were 00002F00, one could then have the following SSDN structure:
1D02/061E/0000/2F00.

Beam Summing p. 2

Upon reading this data, a host program can compute the accumulation (as a
double precision floating point value) of each signal as follows, where
k=32768:

acc:= ((sum[1]*k + sum[2])*k + sum[3])*k + sum[4];

nBP:= cnt[1]*k + cnt[2];

all:= tot[1]*k + tot[2];

These values need to be referenced to the set of values obtained during
the last query by the host program, in order to get the amount of beam
that has been accumulated over the last query interval. Upon conversion to
engineering units, the data can be archived as needed. Note that this
scheme works for multiple users without conflict.

The front end keeps 15 bits of precision in each word in order to maintain
positive values that simplify the above formulas in hi-level language. (It
also avoids the word-swap problems that can result from differences with
Vax data formats, since words are automatically byte-swapped by
Fermilab networking hardware.) Note that a 60-bit long summation will
never overflow in anyone’s lifetime. Also, 30 bits of pulses at 15 Hz is
more than 2 years. Site-wide power outages occur more often than that. A
reset of the front end clears the accumulation area.

The host program will zero its own version of the accumulations according
to its particular implementation. If the host program finds that the
accumulation has dropped to a lower value than it had during its previous
query, it can assume that the system has reset and restarted its
accumulations. The most beam accumulation that could have been lost
would be that which occurred since the last query. Assuming a one-minute
query interval, for example, this should not be significant. (Typical times
between resets of Linac front end stations are measured in months.)

MR RF Local Applications
Mon, Apr 19, 1993

The two local applications DAC0 and DAC1 perform simple closed loop algorithms
needed in the Main Ring RF systems. DAC0 regulates the injection offset for the
ferrite bias supply. DAC1 regulates the high energy offset for the ferrite bias supply.

DAC0
At a certain time in the rf cycle (of length 2.5 seconds, in the case of collider

operation), about 50 µ s after the phase detector trigger time, the phase detector error
signal is sampled. If the value is more than 0.5 volts away from the nominal 0.0 volt
level, then adjust the controlling D/A by 80 mv per volt of error to correct for the
error. The adjustment is in a algebraically positive direction for a positive error.

A bit is set on the occurrence of the phase drtetector trigger signal, and the
sample and hold circuit is triggered 50 µ s after that time to measure the error signal.

DAC1
When the rf turns off each cycle, measure the change in the ferrite bias supply

current waveform. If the bias supply program is more than 2.5 volts, and if the bias
supply is on and the modulator is on, then adjust the high energy bias supply offset.
The amount of the offset is proportional to the measured change and is only to be
made if the change is greater than 0.015 volts. In terms of volts, the adjustment
should be in the opposite direction and of a value 1.3 times the measured change.
This should produce a 0.7 times compensation, so that only a few adjustments
should be needed to correct for a significant error.

Three digital input bits are used to furnish the rf “on” status, the bias supply
“on” status, and the modulator “on” status. The bias supply program is one analog
channel. The current waveform is the other one that is sampled twice to get the
change. When the rf “on” status bit goes to the “off” state, the previous (15 Hz)
cycle’s reading of the bias supply current waveform is subtracted from the present
value to get the change. As an example, if the observed change in the current wave
form is 0.040 volts, an adjustment of 0.080 volts in the D/A is needed to correct it.

Data Capture Logic
Local Application
Wed, May 26, 1993

The CAPT local application can be used to assist in data capturing based upon a set of
conditions that are indicated by Bit states. An “armed” Bit is turned off after a delay
following detection of any trip condition. The armed Bit can be used to condition data
capture via Data Access Table entries. The local applications parameters list for CAPT is
as follows:

E LOC APPL PARAMS 05/26/93 1329
NODE<0576> NTRY<10>
NAME=CAPT CNTR=0193
TITL"CAPTURE DATA WITH DELAY "
SVAR=0004A73E
ENABLE B<00BA> CAPT ENABLE
ARMED B<00BB> CAPT ARMED
DELAY C<0005> CAPDL CY
COND1 B<80BC> CAPT COND1
COND2 B<00BD> CAPT COND2
COND3 B<0000>
 <0000>
 <0000>
 <0000>
 <0000>

The enable Bit# is followed by the armed Bit#. When this bit is “1”, it is considered the
“armed” state. Data collection via Data Access Table entries can be conditioned to
execute when this bit is set. The delay Chan# reading specifies the number of 15 Hz
cycles following the detection of a trip condition during which the armed Bit should
remain set. The condition enable Bit#s are watched by the application to detect the
occurrance of a trip condition. Any of the conditions is enough to be called a trip. The
state of each Bit is indicated by the sign bit of the word. The remaining 15 bits specify
the Bit# itself. In the example shown, when Bit# 00BC is a “1”, or when Bit# 00BD is a
“0”, a trip condition has occurred. A word of 0000 means a “don’t care”. Thus, zero
should not be used for a trip condition Bit#.

When CAPT is first enabled, it turns on the armed Bit. When CAPT is disabled, it turns off
the armed Bit. When a trip is detected while in the armed state, the delay counter is set
to count down. During the countdown, any further trips are ignored.

The initial program version is 220 lines of Pascal, generating about $300 bytes of code.
The maximum number of condition Bit#s can easily be increased (up to 7).

Delayed Reset After Trip
Data Access Table gymnastics

Fri, Oct 14, 1994

The problem:
Detect a trip condition via a status bit, wait for maybe a few minutes,

and apply a reset control action to recover from the trip. This note gives a
concrete example of one method to do this via Data Access Table entries.

Solution:
Build a counter to count cycles since the start of a trip condition. Use

a period specification entry conditioned by the counter value to enable the
following reset control action, plus a clear of the counter channel in case
the reset is not immediate, in order to insure that subsequent resets
cannot occur too soon.

Example:
Suppose in node 056B, operating at 10 Hz, status Bit 0198=0 indicates a

trip condition, channel 0013 is used as the counter channel, a delay of 5
minutes is required following a trip before resetting, and pulsing Bit 011C
high for one 10Hz cycle resets a trip. (Use two non-volatile memory words
at 40FF70 for constants. Set up the counter channel as a dummy settable
channel so the clear works.) The following Data Access Table entries follow
the approach outlined above:

1500 0013 0000 0000 Build cycle counter in Chan 0013 when Bit 0198
transitions

0000 8000 0198 0001 to zero. Clear counter while Bit 0198 is one.

7F00 0001 0000 0000 Enable following entries when counter value falls
outside

0000 C000 0013 0BB8 range 0000–0BB8. (0BB8 = 5*60*10 cycles)

0D95 0000 0040 FF70 Pulse Bit 011C high for one cycle. (40FF70)=0401.
056B 011C 0000 0001

0D81 0000 0040 FF72 Clear counter to limit rep-rate of reset. (40FF72)=0.
056B 0013 0000 0001 (Do this in case reset doesn’t set Bit 0198 right

away.)

If the reset pulse does not immediately cause Bit 0198 to become set,
indicating a non-trip condition, then the last entry insures that the reset
will only be done once. If the trip condition persists, and Bit 0198 continues
to remain a zero, then the reset pulse will be re-issued 5 minutes later,
when the counter again advances past BB8. If a reset occurs (manually)
before the 5 minute timeout, the counter will be cleared.

DirectNET PLC Access
Local application
Thu, Feb 1, 1996

The vacuum controls interface for the PET project uses a
Programmable Logic Controller to do the interlocks handling and vacuum-
specific logic that is required. The IRM interfaces to the PLC via an RS-232
serial port. The basic approach is to routinely collect analog and digital
data from the PLC, then map it into the IRM's analog and digital channels.
Control actions are also output as necessary. All of this logic is handled by
a local application.

The serial I/O input supported by the system system software passes
through the Serial Input Queue (SERIQ) table. By monitoring the contents of
the SERIQ, all received characters of serial input, except the linefeed (0A)
and null (00) characters can be seen. This is enough to catch the data
coming from the PLC.

The DirectNET protocol can transmit data in hex (binary) or in Ascii.
Although using Ascii requires twice the time for the data transfers, it helps
to unambiguously detect control characters that are part of the protocol.
This implementation of DirectNET support will use Ascii for that reason.
The following control codes are used by the DirectNET protocol:

ENQ 05 ETB 17
ACK 06 STX 02
NAK 15 ETX 03
SOH 01 EOT 04

DirectNET Overview

One data transaction requires a series of I/O communications
between the host computer and the slave PLC. To begin any transaction, the
master sends an inquiry 3-byte sequence of "N", "address", ENQ, where
address = $20 + the PLC slave address. The slave responds with the same
sequence, with the ENQ byte replaced by an ACK.

The master then sends a header that defines the operation. Its
format is SOH, header, ETB, LRC. The LRC stands for a one byte Longitudinal
Redundancy Check that is the exclusive OR of all the Ascii bytes within the
header. The header itself consists of the one-byte (two Ascii characters)
slave address, read (30) or write (38) character, data type character, two-
byte starting address, one-byte #complete (256-character) blocks, one-
byte number of bytes in last block, and one master ID byte (0 or 1). The
slave responds with an ACK character.

For a read request, the slave continues by sending the data message
in the format STX, data block, ETX, LRC. If the #characters in the data block is

DirectNET PLC Access p 2
than one data block is sent, with each complete data block using a ETB

character in place of the ETX. Each data word within a data block is in byte
order, least byte first. After each complete data block, or the last
incomplete data block (of length 0–255 characters) is received by the
master, the master returns an ACK. The slave then returns an EOT. The
master finally sends an EOT. This final EOT clears the slave for future
detection of an inquiry sequence.

For a write request, the transaction sequence is the same, but the
data is transferred from the master and ACK'd by the slave. After the last
data block is ACK'd by the slave, then the master sends an EOT to end the
entire transaction.

Timeouts are imposed on the successive communications of a
transaction. If a slave times out awaiting a response from a master, it will
be necessary for the master to send an EOT to clear the slave to accept a
new inquiry.

The details of this communication protocol are found in the manual.

IRM serial support

The usual serial port support in an IRM is organized around lines of
input separated by a CR character. Nulls (00) and LF characters (0A) are
removed from the input stream. If more than 128 characters are received
without a CR, then one is inserted into the serial stream. By operating the
DirectNET communications in Ascii mode, this should not cause a problem,
as LF and nulls and CR aren't used. The slave sends a CR in Ascii mode. But
a data block could be longer than 128 characters, so waiting for one would
not be advisable. Therefore, as a first step, we will simply monitor (at
10Hz) what is found inside the SERIQ and in this way be able to see all
characters in the stream as soon as they come in and are deposited into the
SERIQ by the serial receive interrupt code.

Serial output support is usually organized as lines, with trailing
blanks removed and CR and LF inserted. This is the usual way, but there is
a separate listype that permits serial output without such editing. We shall
use the latter listype for DirectNET output, in case the CR, LF would cause a
problem for the slave PLC. The serial baud rate for use with the DirectNET
interface is 19200 baud.

Data acquisition approach

The DNET local application program is used to collect the data
routinely by sending a read transaction. The response data consists of two
parts, the first for analog and the second for digital data. The response data

DirectNET PLC Access p 3
is then mapped into the IRM's local analog channels and digital bytes.
Between data acquisition transactions, DNET also monitors a message queue
for setting commends, either to an analog word or a digital word. When a
message is detected, a write transaction is made in place of the next data
acquisition transaction. This approach means that all the support afforded
analog channels and binary bits in the IRM system can be preserved. The
acquisition may be slow, but this is not thought to be a problem for a
vacuum system controls interface. With this approach, an update rate of
1Hz or better, and a control action delay of less than one second, should be
achievable.

In order to prevent other uses of the serial port for output, we may
place a flag bit in the PRNTQ header that prevents such output. A simple
way to do this may be to allow only the raw listype to work for serial
output. Usual serial port output uses the normal output logic that edits out
terminal blanks and adds CR,LF.

Message queue support

A change in the system code supports use of a PLCQ message queue.
When a setting is made to a PLC-type device, a message about the setting
is placed into the message queue. (If it has not been created, it will first be
created.) In this way, there is a place for the settings that result for the
Restore action following a system reset to reside, until the time that the
DNET local application is initialized and the first data acquisition transaction
completed. As DNET is initialized, it attaches to the PLCQ message queue so it
can check for any waiting messages.

Parameters

Local application DNET parameters, using example test values, are as
follows:

ENABLE B 00D4 Bit# enables local application
SLAVE 0001 Slave address of PLC interface
DATATYPE 0001 Data type# used for data pool acquisition
REFADDR 1001 Base reference addr for analog, digital data pool
NACHANS 0010 #chans of analog data
NDWORDS 0008 #words of digital data following analog data
MAPCHAN C 0180 Base analog Chan# for mapping to local IRM

space
MAPBIT B 0180 Base binary Bit# for mapping to local IRM space

0000 (spare)

DirectNET PLC Access p 4
0000 (spare)

The above set of parameter values supports 16 analog channels and
8 words (128 bits) of digital data.

Digital control scheme

Each BADDR entry is normally a memory address that should be
written for the associated status byte. But 1553 and SRM communications
required specially-coded 4-byte BADDR entries that are signaled by the use
of hi byte values 80 and 81, respectively. For the PLC support, we use a hi
byte value of 82. When the usual binary data scan occurs, via the "0405"
entry in the data access table, such entries are skipped. When a digital
control setting is made, the data type and reference address are found in
the lower three bytes of the BADDR entry. To perform the setting, the
information must be passed to the DNET local application via the message
queue scheme described above.

DNET collects the data pool from the PLC every 4 cycles. For support
by a local application that is invoked at 10 Hz, this is the easiest approach.
During the first cycle, the enquiry message is sent. On the second cycle, the
3-byte response to the enquiry is received, and the request header is sent.
On the third cycle, the acknowledgment to the request header is received,
followed by the data that was requested, and the ACK is sent. (If there is
too much data, given the bandwidth available, then an additional cycle or
more would be required.) On the fourth cycle, the EOT is received, and the
EOT is sent to the PLC to clear it for receipt of the next enquiry. The message
queue is checked for any settings to be performed. If one is found, then
another four cycles is spent doing that write transaction. The required data
type byte, reference address word, and data word are taken from the
message queue entry, which was filled by the setting support in the
system code using the contents of the BADDR entry. Upon completion of the
write transaction, a new read transaction is performed that updates the
data pool. As a result, the data pool is updated every 0.4 seconds, but
when a setting must be performed, 0.4 seconds is taken to perform it. The
maximum time between updates of the data pool is therefore 0.8 seconds.
The maximum time to perform a setting, assuming none is already queued,
is also 0.8 seconds. If a faster update rate is needed, a means of invoking
the local application in response to serial activity will be required. At first,
omitting such support is easier.

DirectNET PLC Access p 5
Bit-based, byte-based, and word-based digital control are supported.

In any case, however, a word-wide setting is actually performed. Bit-based
toggle, set hi, and set lo digital control types are supported. Bit-based pulse
types are not supported for this hardware; the PLC's cpu logic can be used
to do it.

Analog control

Analog control is specified by a new analog control type# $19. The
second byte gives the data type, and the last two bytes give the reference
addresss to be used to effect the setting. It may be in the memory region
that is part of the data pool, in which case the PLC's cpu will have to
perform the setting to the real I/O module; or it may be in the I/O module
itself. Upon successfully queuing the setting message, the setting word of
the ADATA entry for that channel is updated, even though completely
successful completion of the setting is not assured. Because knob control
could queue settings faster than they can be delivered at 0.8 sec, the local
application checks for successive entries in the queue referencing the same
target address (data type and reference address), and coalesces them as
much as possible, delivering only the final setting it finds waiting in the
queue.

Domain Name Server Access
Obtain IPaddress given node#

Fri, Feb 23, 1994

Each station has a node# that is used in data requests to indicate where a
device resides. Historically, this node# has been part of the physical
network address. But with the use of Internet Protocols, this natural node#
is less directly useful. Given a node#, how can one determine the IP
address needed to support IP communications?

Acnet developed a scheme that uses an alternate node# that is an index in
a table of IP addresses that is downloaded to each computer that supports
Acnet. As a result, each local station recognizes two node#s. One is the
historically natural one, such as 0576; the other is the IP table index, such
as 096F.

Until now, specifying a natural node# in a local station page application
results in non-IP communications. Use of the 09xx node# forces IP
communications. In order to obtain global access to local stations that are
on different networks, especially common on ethernet, it may be desirable
to force IP communications, if possible. If this is done, how can one derive
the IP address given a natural node#? A convention has been used for this
purpose in the host support of Macintosh and Sun computers. Rather than
use the 09xx values, the natural node#s are used. The Domain Name Server
is consulted to translate from a node name such as “node0576.fnal.gov”
into an IP address.

Normal domain name resolver code operates synchronously; i.e., it returns
only after a reply is received in response to the query to the domain name
server. In the context of a local station’s real-time operation, this is
inconvenient. To use DNS access, it will be necessary to operate
asynchronously and to maintain a cache of node# vs IP addresses. If a
name lookup query is sent to the name server, the frame due to be
transmitted may be discarded. When a response from the name server
arrives, the IP address can be placed into the cache, so that it will be
available the next time access to that node# is needed.

Imagine a table with entries in the following format:

node# count IP address

A nonzero node# means the entry is in use. A nonzero IP address means
that an entry in use is complete. The counter is used to time out stale
entries and also time out responses from the name server. Negative values

Domain Name Server Access p. 2
no reply has yet been received. Positive values mean that a countdown is
in progress until the name server query is retried. If the counters “tick” at
once per second, then the maximum delay (32K seconds) is about 9 hours.
An IP address of zero (with nonzero node#) means that no response has
ever been received from the name server for that node#. If a time out
occurs while awaiting a response from the domain name server, and the IP
address is nonzero, then leave it the same, as the name server may only be
temporarily unavailable due to network problems. If a response from the
server indicates that the name is undefined, then clear the entry, as an IP
address cannot be found for that node#. The table can also be maintained
manually, in the absence of an domain name server, if desired.

When a node# is encountered that does not have an entry in the table, use
a roving pointer to determine where to start a search for a vacant entry
for the new node#. This insures that an entry will not be re-used too soon.
In this way, one can use the entry#, perhaps plus an offset, for the request
ID in the name server query message. The response ID will then indicate
the entry whose IP address is to be updated.

This logic is implemented in a local application. Each LA is given a chance to
execute each 15 Hz cycle, which provides the opportunity to perform
timeout functions. The LA will also run, invoked by the SNAP Task, when a
reply is received for the client UDP port, which provides for updating the
appropriate table entry. The memory used for the table should be in non-
volatile memory, so that the information is not lost upon system reset. As
the system code needs access to the table also, the new IP Node Address
Table (IPNAT) is system table #27. If the table is undefined, then this
feature is be supported by the system. If the LA, called DNSQ, is not
enabled, then the feature is supported, but only for node#s already in the
table. In this way, one can implement support for access to a restricted set
of nodes.

How does the system code that queues a message for a network via OUTPQX

get the attention of the LA in order to carry out the job of issuing the name
server query for an unfamiliar node#? When the LA is enabled, it writes its
client portId, the entry# in the NETCT table of network and UDP port
connections, into the IPNAT table header. The system code can check this
portId value to lookup the message queue ID used for advising the LA of
UDP network messages destined for its UDP port. Writing a special message
to this queue advises the LA of the new node# for which it should send a
new query. The system clears this portId word in the IPNAT header at reset
time.

Domain Name Server Access p. 3
third word of the PAGEM table is stored the “broadcast node#” used for
name lookups and data requests that are addressed to multiple nodes
using multicasting. If this value is in the UDP range of 09Fx, then we can
assume the preferred use of IP communications.

IPNAT table header format

'IN' last limit start

portId #retries #queries

DNS IP address #waiting #active

up to 16-char suffix for DNS queries

The ‘IN’ key serves to identify a valid table. (The IP default feature can be
disabled by modifying this key.) The last word is the offset to the last
entry used after searching for an empty one to install a new one. The limit
word is the size of the table. The start word is the offset to the first entry.
The portId is the index in the NETCT table, placed here by the DNSQ local
application when it is enabled. The #retries is the count of the number of
times that the LA had to repeat sending the name request to the DNS

because of no response within the time out period. The #queries is the
total number of DNS queries since reset. The IP address of the DNS is next,
followed by the #waiting word, the #entries with waiting queries, and the
#active word, the #entries actively awaiting a DNS response. A default
suffix of up to 16 characters, blank fill, is appended to each node# name of
the form “nodexxxx” with xxxx as the node# in hexadecimal. At Fermilab,
the suffix “.fnal.gov” is used.

In the OUTPQX routine, when the destination node# is in the appropriate
range to be a natural node#, currently 05xx, 06xx, and 07xx, and the system
is configured to default to IP communications, except for reply messages,
con sult the entries in the IPNAT table to get an IP address, and call
PSNIPARP to obtain a pseudo node# 6xxx. If no IP address is present, make
a new entry for this node#, change the destination node# to zero so that it
will be discarded, and write a special message into the message queue that
is associated with the portID NETCT entry. This will invoke the DNSQ local
application, which will see the special message and send a query to the

Domain Name Server Access p. 4
name server for the given node#. (But it will return without waiting for a
reply!) During subsequent 15 Hz LA processing, if no response is
forthcoming, it will repeat the query. After perhaps 3 times, it will give up,
setting the count word in the IPNAT entry to retry much later. In this way,
responses from the DNS will be cached in the table.

Use of the count word for two purposes is as follows: It is divided into two
bytes, cntHi and cntLo. Three cases depend upon the cntHi value. If cntHi >
0, cntLo is decremented each second. When it reaches zero, cntHi is
decremented. If cntHi reaches zero, the time out has occurred that repeats
the query to the DNS to catch up on any IP address changes for that node.
In the case that cntHi is negative, cntLo is also decremented each second.
When it reaches zero, the query is retried, and the cntHi incremented. If
cntHi reaches zero, it means that no response has been received from the
DNS at all for this node#, and if the IP address is zero, the entry should be
cleared, as the node# may be bogus. If cntHi = 0, no incrementing or
decrementing is done. This allows for manual installation of table entries
with static IP addresses. This is also useful for foreign nodes where the
suffix does not apply.

The special message to be written into the message queue is as follows:

size=2 mCntOff=4

message ptr

srcOff=0 dstOff=0

pSrcNode=0 ipHdrOff=0

node# count=0 IP address = 0

new IPNAT table entry

This special message is sent via the message queue to the DNSQ local
application only when a new entry has just been placed in the IPNAT, the
node# to be looked up has been placed into the entry, and the IP address
field has been cleared. The message ptr is the address of the node# word
in the new entry. The msgOff value of 4 means that the message count
word is the hi word of the IP address field that has been set to zero. The
logic in UDPRecv, called by UDPRead, that decrements the message count
word to signal that a network mes sage has been processed, first checks to
see whether the message count word value is zero; if so, it does not change
it. The other four words in this special mes sage are not interpreted by
UDPRead. Use of this special message format allows a UDPRead call in the LA

to get the network replies from the DNS as well as the special mes sage
from the system notifying that a new node# needs to be looked up via the
DNS. The LA identifies the special message format by the size=2, just
enough for the new node#.

 HUMBUG for Local Stations
Local application implementation

Dec 15, 1991

Yet another protocol generally supported by front end computers which make
up the accelerator control system at Fermilab is HUMBUG. It provides access to
the memory of a front end, as the data acquisition protocol does not support it.

Protocol
As implemented for the 68020-based local station front ends, two types of

message formats are supported. The first is an Absolute Dump request whose
format beyond the usual acnet header is as follows:

Word Meaning
0 1: Absolute Dump
1 #words of memory requested (1–128)
2 MSW of 32-bit address
3 LSW of 32-bit address
4 unused
5 unused

The reply message format to this request is simply the data words requested. If
the MLT bit is set in the first word of the acnet header—signifying multiple
replies—the data is returned at 15 Hz until the request is canceled. If there is a
bus error encountered, the status word in the acnet header will indicate it.

The second format is an Absolute Patch command, as follows:

Word Meaning
0 3: Absolute Patch
1 #words of memory to set (1–128)
2 MSW of 32-bit address
3 LSW of 32-bit address
4 unused
5 unused
6 ff. Array of data words to set

 This command is always a one-shot. If the message type is a REQ, rather than a
USM, a status-only reply will be sent. If there is a bus error, the acnet header
status word will carry the news.

Klystron RF Gradient Regulation
Local application for Linac Upgrade

Thu, Nov 18, 1993

Introduction
The klystron RF systems drive the accelerating cavities in the Linac

Upgrade. Due to temperature variations, the gradient in the cavities
exhibits a variation over a period of minutes or hours. This note describes
a local application that compensates for such variations to maintain more
constant gradient readings.

The gradient amplitude affects the beam significantly. During beam
cycles, the gradient is reduced by beam loading. Regulation of the gradient
must concentrate on regulating beam cycles, using as a reference the
nominal gradient value used by the alarm scanning system. On no-beam
cycles, when no beam is accelerated, the program can measure the amount
of beam loading by comparing the gradient reading against the last beam
cycle reading. Then, after some time has passed without beam cycles, this
beam loading estimate can be used to derive the appropriate reference for
no-beam gradient regulation.

Parameters
The “Page-E” parameters are as follows:

E LOC APPL PARAMS 11/12/93 0835

NODE<0622> NTRY<11>

NAME=KRFG CNTR=0113

TITL"KLYSTRON RF GRADIENT REG"

SVAR=00033442

ENABLE B<0090> KFRG K2 ON/OFF

NBWAIT C<0091> K2WAIT CYC

GRREAD C<0484> K2GRAD NRM

GRSET C<0422> L2MSDA V

GAIN C<0090> K2LPGN

AVGCYC <0020>

LOADCYC <0080>

After the required enable Bit# parameter, NBWAIT is the Chan# whose
value specifies the number of cycles after the last beam pulse at which
time the program switches from beam regulation into no-beam regulation.

The gradient reading and setting Chan# are next. The gradient
reading is in “normalized units,” while the gradient setting is in “volts”
units.

The relationship between a change in the setting in these units that

Klystron RF Gradient Regulation p. 2
setting. As a result, the next parameter, the gain Chan#, should be about
0.25 to correspond to full correction. Note that significantly larger values of
the gain may produce an oscillation.

The last two parameters specify periods in 15 Hz cycles. They are not
Chan#’s, so their values must be changed via “Page-E” directly. The AVGCYC

parameter specifies for the no-beam regulation mode the number of cycles
over which readings are averaged to give a result that is compared with
the expected no-beam reference value. It is probably easier to consider
this as the minimum period between making no-beam adjustments. The
LOADCYC parameter specifies the averaging parameter that is used in the
computation of beam loading. The formula is as follows:

avgLoading:= (avgLoading*(loadCyc – 1) + loading)/loadCyc;

A new value of beam loading is measured on each no-beam cycle during
the beam regulation mode, when there has been a “recent” beam pulse.
This value of loading is combined in the above formula to produce an
updated average value of beam loading. The average is used during no-
beam regulation mode to derive the no-beam reference value for the
gradient. The formula is as follows:

noBeamRef:= beamRef + avgLoading;

The beamRef is the nominal value of the gradient as used in the alarm
scan.

Internal constants
Several internal constants are used by the program. To change them,

one must modify the local application program called KRFG.
minGrad = 0.75; Minimum gradient reading for

regulation
maxChange = 0.01; Maximum setting adjustment made at

once
maxSample = 30; #cycles period for sampling parameter

values
beamLoadStart = 0.04; Initialized default value of beam loading

Adjustment limits
If a calculated new setting is made that would take the setting

channel outside of its alarm tolerance range, the setting is not performed.
This serves to keep the range of adjustment within bounds, even if the
gradient readings exhibit peculiar characteristics.

 Local Applications Table
Support for closed loops, etc.

Aug 28, 1990

A means of expansion of the VME local station system software is by the use of
local applications, which are separately-compiled procedures that are invoked by
the system during Data Access Table processing. The Local Applications Table
(LATBL) contains the entries that result in their invocation.

Invocation context
During Update Task processing of the Read Data Access Table (RDATA), one

particular entry causes the LATBL entries to be processed. This means that local
applications are invoked during updating of the datapool, likely to be positioned
either at or near the end of RDATA.

Each local application (LA) is expected to be written as a Pascal procedure, just as
are application page programs. The calling sequence is as follows:

TYPE

TrigType = (init, term, kbint, cycle, net);

ParamList = RECORD

sVarPtr: sVarPtrType;

enableBit: Integer;

params: ARRAY[1..9] OF Integer;

 END;

PROCEDURE LocalApp(trig: TrigType; VAR LAEntry: ParamList);

The first argument is the same as that used by application page programs.
(The kbint and net options may not apply.) The init call occurs the first
time that the program is invoked since being enabled. The term call occurs
when the LA is being disabled. The cycle call is the normal one given each
15 Hz cycle or whenever directed via a special Data Access Table entry.

The second argument is a ptr to a part of the LATBL entry. It points to a
structure in the table entry reserved for a ptr to the LA’s static variables and
an array of up to 10 integers, the first of which specifies the local binary Bit
used as the enable/disable control for this invocation. The other integer array
elements may be anything else required by the particular LA.

Local Applications Table Aug 28, 1990 page 2
During the init call, the LA is expected to allocate memory for its own static
variable requirements. This can be done by calling this routine:

Function Alloc(sVarSize: Longint): sVarPtrType;

This call invokes the pSOS memory allocation routine and returns a ptr to the
allocated memory. If the storage cannot be allocated, a NIL ptr is returned.

When the sVarPtr is returned by Alloc, the LA should save it in the first
longword of its ParamList structure. This is necessary because the LA is a
Pascal procedure that must be invoked multiple times during the time that its
LATBL entry is enabled. Any information that must be saved by the LA across
calls to it must be stored in this static variable space. Note that a given LA may
be invoked multiple times with different ParamList structures. An example is the
Linac rf gradient regulation that is to be done for 3 rf stations by one local station.
This will use 3 entries in LATBL but only a single entry in CODES for the gradient
regulation program (procedure).

When the term call is made, the LA should free its static variable allocation by
calling this routine:

Procedure Free(statVarPtr);

This procedure simply frees the memory allocated by Alloc.

Local Applications Table
A new system table (#14) supports local applications. An entry in this table

has the following format:

status

enable Bit#ptr to static variables other params…

 namecount

The status word is a copy of the previous enable bit reading. Comparing this
value with the current enable bit reading allows the system logic to decide what
to use for the trig argument in the call to the LA. The enable bit, when set,
signifies that the entry in LATBL is enabled. When an LA entry makes a transition
from disabled to enabled, the init call is used. The LA is expected to allocate

Local Applications Table Aug 28, 1990 page 3
during this execution, the act of disabling a local application means it will “start
over” when it is re-enabled.

The program that is to be run is identified by 4-character name. Along with the
type code of LOOP, the CODES table of downloaded separately-compiled
programs is searched for a match, and the address of the executable copy of the
program is used as the target for the call. The first time that the program is
accessed, for the init call, a checksum check is performed to insure that the
downloaded code has not been corrupted, and the program is copied into newly-
allocated dynamic memory for execution. This means that the downloadable area
is always available to receive a new version.

Downloading a new LA
When a change is to be made in a LA program, the new code is downloaded

without concern for the currently-executing code. The LA scan finds the name of
the LA and the ptr to the executing code (in on-board memory) in the CODES
table entry corresponding to that name. The process of downloading leaves this
pointer alone while the code is copied into a newly-allocated area.

When downloading is complete, the checksum is sent to be stored in the CODES
table entry, and the ptr to the downloaded code is marked (by setting its ls bit) to
show that it is a fresh copy.

LATBL table processing
When LATBL entries are scanned by the Update Task, and a fresh

downloaded copy of the code is detected, and the type of call was to be a cycle
call, the call type is altered to a term call. This gives a chance for the LA to free
any allocated static variable storage and “clean up its act” in general. After any
term call, the saved copy of the LA’s enable bit reading is cleared. This will cause
an init call to be given on the next cycle if the LA is still enabled. The checksum
will again be checked and new memory allocated for execution in on-board ram.

After all LATBL entries have been scanned, a separate scan is made over the LOOP
entries in the CODES table. For each entry which has the fresh download bit set,
the bit is cleared, the executable area is freed and its ptr cleared.

The result of the above logic is that those entries which use the program just
downloaded will be disabled and re-enabled automatically the very next cycle.
(If it is desired to prevent an alarm message from being sent, in the case that the
enable/disable status bit is being monitored, one can merely elect to use the 2X
option with that status bit, since the bit will be disabled for only one cycle.) This
means the new version of the code will take effect right away. To prevent this,
either disable all LATBL processing by disabling the Data Access Table entry, or

Local Applications Table Aug 28, 1990 page 4
PAGEP table processing

The index page logic directs the call-up of application pages. When a page is
being called up, if the lo byte of the longword which contains the pointer to the
entry point of the application page program is nonzero, the 4-byte “pointer” is
assumed to be a program name of type PAGE. (Note that this implies that using a
ptr in the old way can still work as long as the entry point address is on a 256-
byte boundary.) A search is made for a match in the CODES table, and the
download area is sum-checked, memory is allocated in on-board ram for it, and
the program is copied into that area for execution.

When the program terminates, either because a new page is called up or a return
is made to the index page, a scan is made of the CODES table. The allocated area
of any PAGE type entry in the CODES table is freed, and its pointer is cleared. This
is done because only one PAGE program can run at a time. Note that this is in
contrast to the LOOP type programs, in which many can be running at once.

TASK or INIT processing
New tasks may be added to the system code by making a scan at reset time

which looks through the CODES table for any entries of type TASK or INIT. Such
entries can be copied into executable memory and called. What they do depends
upon how they are written. Such a program could spawn and activate a task, for
example. Or it could simply do some job at reset time. Only one call would be
made to such a program, and it would be made from the ROOT task. This adds
another dimension to system configuration possibilities.

 Operations Bulletin #1280

Local Control Box
Booster High Level RF

Tue, May 28, 1996
R. Goodwin, B. Peters, R. Florian

As part of the new installation of controls for the Booster high level RF
system, a local control box was proposed to replace the front panel of the
MIU crate, used since about 1970 to interface I/O signals to the Lockheed
Electronics MAC–16 mini-computer. (The MIU interface depended heavily
on the particular I/O channel inter face design supported by the MAC–16
and is unavailable for use with a replacement system.) The control box
purchased for the new local control support is a DynaComp GreyLine 2200
Series operator panel that provides a four-line 20-character alpha numeric
display, a numeric keypad that includes 6 additional keys, a row of 8
function keys, and a set of 8 labeled LEDs. The labels for the keys can be
configured by the implementer. The box interfaces to the IRM serial port
at rates up to 19200 baud.

FBS
ON
OFF

MOD
ON
OFF

FBS OFF

Modulator OFF

Cavity Short IN

Spark Detect

spare

spare

Volts Display

D/A Display

CAV
IN
OUT

Trip
Log

A/D
D/A

7

4

1

8

5

2

9

6

3

0Clr Ent

Inc

Dec

+/–

Set

Volts PageSel

FB12O 7.452< V
MD12V 24.83 KV
PT12SI- 0.001 A
RF12GE 54.39 KV

Local Control Box p 2
Booster High Level RF

After some local testing and consultation with representatives of the
high level RF group, several suggestions seemed attractive. The display
itself is used to show up to four parameter lines. Each 20-character line
provides for a 6-character name, a space, a 7-character numeric value
field, a control marker character, a space, and a 4-character units text field.

The Clr button on the numeric keypad is used as a "clear entry" when
entering a numeric value. The Ent button is used to commit to an entered
value and perform the setting. The +/– button allows entering an arbitrary
signed decimal setting value. The Inc and Dec buttons permit incremental
adjustment for an analog setting. In either case, the setting targets the
parameter indicated by the control marker.

The labeled lights on the left side show whether the FBS or Modulator is
OFF, whether the Cavity Short is IN, whether a spark was detected on the
last update cycle, and whether volts and/or setting values are being
displayed.

The bottom row of push buttons toggles between ON/OFF or IN/OUT states.
The Trip Log button shows the summary trip counts plus the time of the
last clearing of trip counts. Press the Trip log button again to return to the
normal four-parameter list.

TRIPS 11/09/95 0758
FBS= 10
MOD= 3
STA= 16

The A/D D/A button toggles between displaying reading values and setting
values on the four-line parameter list. The D/A display light indicates when
setting values are displayed. This mode is indicated by an engineering
units field of "V. ". The Volts button causes the display values to be in
A/D (or D/A) volts units. Press the Volts button again to revert back to
normal engineering units display.

The Sel button sequences the control marker through the controllable
parameters of the current available set of four-parameters, in case more
than one such parameter is controllable. The Page button sequences
through the available four-parameter displays. If the control box isn't used
for a period of time, it will revert to the first four-parameter list.

The functionality described above is supported via a local application

Local Control Box p 3
more information:

http://garlic.fnal.gov/booster_controls/

http://garlic.fnal.gov/booster_controls/

 Local Station Additions for Acnet
Local applications and more

Dec 26, 1991

The Linac controls upgrade to the local station software required several
additions to that software in order to fit into the Acnet system requirements. This
is an ad hoc list of some of those changes.

Local applications
A local application is a software procedure that is invoked by the system

software to provide a particular feature without being linked into the system
code itself. It is therefore a modular addition to the local station software. Any
local application can be independently enabled and updated to a new version
even while the system is running. It is known by name and not by memory
address; space for a copy in non-volatile memory is handled automatically by the
system support. A given program can also be updated in all local stations at once
using token ring network group addressing. Examples of existing local
applications and their purposes follows:

GRAD
Regulates rf amplitudes in the cavities to compensate for long term drifts

PHAS
Regulates rf intertank phase for long term drifts

CROB
Automatic recovery from pa crobar trips of rf system

DRIV
Automatic recovery from rf system driver trips

PINH
Automatic reduction in rf gradient setpoint after rf trip w/o recovery

QUAD
Automatic recovery of drift tube quad power supply trip

PRES
Regulates ion source pressure

 Note: the above set of 7 closed loops always existed in Linac local stations.

Local Station Additions for Acnet Dec 26, 1991 page 2
AERS

Alarm Event Reporting System shepherds alarm messages to AEOLUS, the
Acnet alarm-handling process which runs on some Vax.

FTPM
Fast Time Plot Manager supports requests for data to be used by the Fast

Time Plotting facility which runs on Vax consoles.

AAUX
Acnet Aux provides for "ping"-type support to check communications.

GATE
Permits gateway support of Acnet-header communications allowing for

copying memory from an SRM to any other SRM.

NETM
Network Monitor ensures that network frame reception is working and

automatically re-connects to the network if it is lost.

TEMP
Regulates water system temperature for the new Linac rf modules

KRMP
Assists during conditioning of the new rf modules. Also collects detailed

spark statistics.

FREQ
Controls a VCO to keep the cavity resonant following application of a large

change in rf power to the cavity.

Local Station Additions for Acnet Dec 26, 1991 page 3
Page applications

Application display programs that run on the small local consoles have
always been a part of the local station software. The original Linac supported the
standard set of 4 below. Several new page applications have been added in the
course of the controls upgrade for Linac.

PARM
The parameter page is used widely in Fermilab accelerator controls systems

to support general display, control and plotting of analog parameters.

EDAD
Edit Analog Descriptors provides for entry of analog device information into

the local station database.

EDBD
Edit Binary Descriptors provides for entry of binary device information into

the local station database.

MDMP
Memory Dump allows flexible inspection of memory for both hardware and

software diagnostics.
Note: The above 4 are the original basic suite of page applications.

SURV
The Survey page assists in maintenance of the large number of token ring

nodes that are attached to the token ring network.

REQR
Request Reply timing can be histogrammed for the Classic protocol.

CRTI
CRT Image permits running a page application remotely on another node.

Implemented in another platform, it permits running any page application from
another platform, such as a workstation or Macintosh.

SRMC
This SRM Copy page uses the GATE gateway local application to support the

copying of memory between any pair of SRMs.

Local Station Additions for Acnet Dec 26, 1991 page 4
New modules

Several new modules provide additional support needed for the new Linac
controls system.

ACREQ
This large module provides complete support for the accelerator data

acquisition protocol, sometimes referred to as RETDAT/SETDAT. Included is
support for offset/length to provide generic access to the local station database to
assist in uploading to the central database. Also included, to reduce network
traffic to the consoles, is server support, in which all Linac device data is
retrieved from a Vax console through a single "server node", which in turn
collects more efficiently from the "real" source nodes. Again, to reduce the usual
network traffic load on Vax consoles using the standard Parameter Page,
averaging support is provided for analog device readings, preferentially
averaging beam pulses over no-beam pulses.

OPENPRO
To facilitate the support for additional protocols, a set of routines is used with

a Protocol table to route communications for more protocols through the ACREQ
module. In particular, it is now possible to write a local application that supports
a new network protocol of the Acnet-header type. Examples of such LAs are
FTPM, AAUX, and GATE.

ARCINT, SRMREQ
Arcnet network support was added to the system in order to communicate

with the SRMs, which are the data acquisition interface for the new Linac. A new
simple data acquisition protocol was designed for use with the SRMs. Special data
access table entry types were also needed to permit collection of data via Arcnet,
taking maximal advantage of arcnet communications.

LOCAPPL, SETPROG
These two modules provide the support for local applications and the

associated downloading of same.

ASTATUS
Composite status words are assembled from the digital I/O interface via a

table-driven scheme. These words can be scanned for alarms in parallel, to mimic
the traditional Tevatron notion of power supply status words.

Network Time Protocol Client
It’s about TIME!
Thu, Apr 21, 1994

Local stations have always maintained correct time-of-day, derived from an NBS satellite clock
receiver that transmits via RS-232 a 13-character Ascii message that is interpreted by one of the
stations on the network, which then broadcasts the result to the rest. To use this system in another
place, one would need to purchase such a radio receiver. But with the widespread use of Internet,
another scheme taking advantage of the Network Time Protocol to access a server seems an
easier means to get the time-of-day. This note describes an implementation of an NTP client as a
local application. It periodically queries an NTP server, interprets the reply, and updates the local
time-of-day. Between queries, the time-of-day is maintained via timing based upon a crystal on
the CPU board.

The NTP protocol is a simple client server model. A client sends a simple request addressed to
UDP port# 123 of an NTP server node. The server returns a reply that includes an 8-byte time-of-
day that consists of a 4-byte integer number of seconds and a 4-byte fraction. The time value is
based upon January 1, 1900. Since some time in 1968, the value of this 8-byte quantity has been
negative; i.e., the number of seconds since 1900 has been more than 231. The value will “roll
over” in 2036. In the meantime, we should be able to talk about time-of-day reasonably
accurately.

The parameters used by this local application are as follows:

(put picture here)

Every local application has an enable bit as the first parameter. The second parameter for the
TIME local application is the period between queries expressed in seconds. (For example, 003C =
60 seconds.) The next two word parameters comprise the IP address of the NTP server to be
queried. Here, 83E17C28 is 131.225.124.40, the IP address of CNS33, a Fermilab NTP server. Next is
the number of retries before timing out. Next is the time zone correction in hours relative to GMT,
which depends upon whether Daylight Savings Time is in effect. Finally is given the multicast
target node# for sharing this news with other local stations on the network.

Now for the details. The Network Time Protocol is described in RFC-1305 in 300K of detail. A
much easier treatment is in RFC-1361, describing the Simple Network Time Protocol that is
suitable for end user clients. SNTP uses the NTP in a simple way. This SNTP variation is used by
the TIME local application.

The message format is 15 longwords, or 60 bytes, in length. In the SNTP variation query format,
the first byte is $0B, with all other bytes zero. The meaning of this first byte is that the Version
Number = 1, and the Mode = client. Version 3 of NTP is described in RFC-1305, Version 2 in
RFC-1119, and Version 1 in RFC-1059. There was a Version 0 described in RFC-959 that is no
longer supported by NTP servers. An NTP server that supports Version “n” also supports lower
versions down to 1.

The reply to such a query is up to 60 bytes in length, where the 8-byte Transmit Timestamp is

Network Time Protocol Client p. 2
To convert this form into the time-of-day requires some work. The TIME local application may
not be the best example of how to do it. But here is a description of its current implementation:

Empirically, it has been determined that the value of seconds since the start of 1994 is
$B0CF3B80, or 2966371200. This value assumes the Greenwich Mean Time zone, which is 6 hours
ahead of Central Standard Time. The software subtracts this 1994 base from the Timestamp
value and derives the rest of the month, day, hour, min ute and second from the rest. If more than
a year has passed since 1994 (January 1, 1995, or later), it assumes 365 or 366 days of seconds
per year. Our calendar system is not quite perfect, so that the time-of-day in some years has an
extra “leap second” inserted after the last day of the year. The Timestamp returned by NTP

servers, however, does not include any such “leap second,” so the time-of-day produced by TIME

should be ok for subsequent years. (This is explained in RFC-1305.)

Once the conversion has been made, the local record of the time-of-day, in BCD at memory
address 00000788, is set to the current time. Then, if the target node par ameter is nonzero, a
message is prepared using Classic Protocol to send it to the local stations on the same network.
The address that is used for this depends upon a table of transmittable multicast addresses in the
TRING table in non-volatile mem ory. This table of 8-byte entries is at address 00105B80 in 133-
based local stations and at address 00405B80 in 162-based stations and Internet Rack Monitors.

A timeout of 2 seconds is allowed before assuming no response from a server. This is a constant
in the TIME local application. The number of retries parameter should allow for a timely response
very soon, however, in case routers need to perform ARPs, say, and fail to pass an unexpected
frame the first time.

NonLinear Units Conversion
Local application
Fri, May 28, 1993

Radiation monitors called “scarecrows” and “chipmunks” are used to measure radia
tion in beam enclosures at Fermilab. The readouts are non-linearly related to radiation
units of mr/hour. This note describes an easy implementation for support of the linear
ization of such signals, in order to make it easy for arbitrary host platforms to scale to
engineering units linearly.

An example of the setup of this RADC local application is as follows:

E LOC APPL PARAMS 05/28/93 1036
NODE<0576> NTRY<11>
NAME=RADC CNTR=00AE
TITL"RAD MONITOR CONVERSION "
SVAR=0004942C
ENABLE B<00BE> RADC ENABLE
FORMULA1 <0001>
INPUT1 C<0000> N576T0 V
OUTPUT1 C<000B> RADT1 MRH
FORMULA2 <0002>
INPUT2 C<0000> N576T0 V
OUTPUT2 C<000C> RADT2 MRH
FORMULA3 <0000>
INPUT3 C<0000> N576T0 V
OUTPUT3 C<0000> N576T0 V

Up to three conversions can be specified in each instance of this local application. Each
specification includes the formula index#, the raw channel#, and the result channel#.
The formula index#s are 1 for chipmunks and 2 for scarecrows. The input channel
provides the raw voltage reading. The output channel is a dummy channel whose scale
factors have been suitably chosen to fit the expected range of the result and the
resolution needed. Ultimately, it becomes a 16-bit signed value.

The operation of the logic is to get the reading of the input channel, apply the indicated
formula, and write the result to the output channel using engineering units. The
formulas used are of this form:

radiation:= Exp(c0 + v*(c1 + v*(c2 + v*(c3 + v*c4))))
The two cases supported simply use different coefficient values. Additional formulae
could of course be added. This local application isn’t restricted to radiation conversion.
Any constants and coefficients needed would be part of the program code, however.

The source code is 183 lines of Pascal, executing in less than 1K bytes.

Resistor-Temperature Conversion
Tesla cryogenic system local application

Wed, May 11, 1994

The TRTD local application supports needs of low temperature measurements for the Tesla
superconducting RF laboratory in LAB-2 in the Fermilab village. Four signals are demultiplexed into
16, thermal emf’s measured and used to get the resistance of the cold resistors, which are of two
types, platinum and carbon. From the resistance, calibration tables are used with linear
interpolation to get the temperature in degrees Kelvin. This note describes the methods used to do
this.

Parameters layout
The available parameters for TRTD as seen via “Page E” are as follows:

(put picture #1 here)

The usual enable Bit# argument is followed by MPXDATA, the base channel# of the four
multiplexed signals. V+,ETC is the base channel# of the sixteen V+, V–, emf, res istance, and
temperature values, altogether 5 sequential “arrays” of 16 channels. The R REF reference resistor
channel# specifies the Pt reference resistor. The next channel# holds the Carbon reference resistor
value. MPXSEL is the base Bit# of the digital byte used for selecting the four 1-of-4 multiplexer
values. The program sequences this byte through values of 00,AA,55,FF on each four successive
cycles. The CURRDIR parameter is the base Bit# of the two bits used for controlling the current
direction through the Pt and C resistors, respectively. The EMF PER para meter is the number of
cycles between measurements of the V– and emf values, done by reversing the current direction for
four cycles to collect these data.

Demultiplexing
Signals from the RTD system are very small, so they are amplified by four-input

multiplexed amplifiers. Two-bit select codes are wired to each amplifier. The program operates all
four two-bit select codes at once, as they share the same byte of digital output. Data is read from
one selection each cycle, which for the LAB-2 facility is 10 Hz. In this way, all 16 channels of data
that result are updated every 400 ms.

Thermal emf’s
To measure the thermal emf’s that result from the conductor leads that connect from room

temperature to cold temperatures, it is necessary to reverse the current. Every so often, perhaps
every few minutes, the current is reversed and the data collected for the negative direction of
current flow. After taking four cycles to accomplish this, the current is returned to the usual
positive direction. The formula for the emf is as follows:

emf = (V+ + V–)/2

These emf values are updated every time a new V– is measured with the current direction negative.

Resistances
The resistors used are of two types, platinum and carbon. The single Pt resistor calibration

Resistor-Temperature Conversion p. 2
set of 10 calibration points only. These Pt calibration points are part of the program source and are
as follows:

 (put picture #2 here)

The formula for resistance is as follows:

R= ((V+ – emf)/V+
ref)*Rref

Here V+
ref is the voltage across the reference resistor (Pt or C) and Rref the reference resistor value

itself. The reference values are constants in the program. The values at the time of this writing are
Rref = 99.82 (Pt) and 1000.0 (C).

The carbon resistors calibration curve is very nonlinear, so more calibration points are used. Linear
interpolation is done with 20 calibration points between the log of the temperature and the log of
the resistance. In order to collect these calibration data for use by the TRTD program, the calibration
data points were entered into Excel by editing the original full calibration data set text file. In the
spreadsheet, it was easy to calculate an average of the 5 calibrated carbon resistors for use with
those carbon resistors that have no measured calibration data. In addition, logs were calculated for
the temperature and resistance calibration data points. These log values were output from Excel via
a text file, which was then edited into an MPW assembly source file containing “DC.S” data
directives. This source file was then assembled and the resulting data downloaded into the station
that will run the TRTD local application. Upon initialization, the program requests this local data file
and places the data into its calibration data arrays for use in converting the carbon resistances into
temperatures. Part of the calibration data entered into Excel was this:

(put picture #3 here)

The calculated logs of the calibration point data are as follows:

(put picture #4 here)

These data were then edited as data declaration statements into an MPW assembly source file,
assembled and downloaded as a data file of 32-bit floating point values called DATATRTD into the
local station along with the LOOPTRTD local application. When the program is first initialized, it
reads the data file for use during Carbon resistor temperature conversion.

Internal details
Four channels are read each cycle and converted as necessary. Of the 16 channels read,

they are of the following “resistor types”:

(put picture #5 here)

The resistor type specifies which reference resistor is used as well as which calibration data to use

Resistor-Temperature Conversion p. 3
to perform the temperature conversion.

During program operation, a data structure allocated at initialization keeps track of the context.
Using Page E, one can find the location of this dynamically assigned data structure. Its structure at
the time of this writing, expressed in the format produced by the memory dump page application,
at a time when the signal values may not have been valid, is as follows:

(put picture #6 here)

The diagnostic deltaTimes byte array shows elapsed times per 10 Hz cycle in units of 0.5 ms. (A
value of 02 means 1 ms.) Since the program operates on 4 signals per cycle, these times exhibit a
periodicity of four cycles.

All floating point values are in IEEE standard 32-bit single precision.

Debug mode
A special debug mode is available for checking the ohms to temperature conversion for the

Carbon resistors. To use it, find the above structure using Page E. Then set the debug#, which is
initialized to zero, to the index value 1–16 of the channel whose conversion is to be checked. When
this word is nonzero in this range, the program stops doing its usual work and concentrates on
only the given channel index. It accepts the resistance value from the resistance channel, rather than
computing a new one based upon the current demultiplexed data readings. This allows a value to
be set into a resistance channel and the temperature channel observed resulting from this
conversion. One can make a calibration plot of temperature versus resistance in this way using, for
example, the Parameter Page on the Macintosh written by Bob Peters. Here is an example of
making such a calibration curve for the T6 signal:

(put picture #7 here)

Resistor-Temperature Conversion p. 4
Logarithms, etc

Because of the extremely nonlinear characteristic of the resistance of the Carbon resistors
relative to temperature, it was necessary to work with logarithms of these parameters. With linear
interpolation on the logarithms, reasonably accurate results can be obtained. But the IRMs use a
68040 cpu, which does not have support for logarithms and powers on-chip, although it does have
support for the basic add, subtract, multiply and divide. So a routine was needed to compute
logarithms and powers. In a book called “Approximations for Digital Computers” by Cecil
Hastings, Jr., Princeton University Press, 1955, can be found suitable formulae for these and
other functions to several degrees of accuracy. The formula for Log10(x) that was used in TRTD has
an error function < 0.000002 over the range 1 ≤ x ≤ 10 . Its form is as follows:

(put picture #8 here)

RET/SETDAT Test Page
Local Station Application

Mar 22, 1990

Introduction
A standard message protocol has been used since 1982 for accelerator control

at Fermilab between the console computers and the front end computers. It is
referred to locally as “DAS,” (Data Acquisition Services) or as “RETDAT/SETDAT,”
after the network task names that are assigned to receive data requests and
settings, respectively.

The Linac control system interfaced to this protocol via the Linac front end PDP–
11, which translated between this protocol and the “classic” protocol that the
Local Stations have always supported. The new Linac control system Local
Stations will use this standard DAS protocol directly. The VME local stations now
support this message format for data requests and for settings. This application
page exercises this protocol by issuing data requests or settings to a local station
and displaying the responses that are returned. It is written using the local
station’s Network Layer interface routines.

Display page layout—data request mode

 RET/SETDAT TEST 03/21/90 1122
PI #BY SSDN
12 2 0002 0008 0000 0000 0
13 2 0102 0008 0000 0000 0
 1 20 0202 0008 0000 0000 -2
REP= 1 FTD=0004 M=1 RQID=1222

ANSWERS 0 42 5.5 MS 0
00 0005 0000 0800 0800 5C71 3C19
0C 0006 1222 0030 0000 0CD0 0000
18 0CD0 0000 002D 0CCC 0000 00CC
24 0000 0100 0000 0056 0000 0000

Repeat count,
Freq Time Desc

Prop Index,
#bytes, SSDN

NetOpen status
NetWrite status
xmitStat
MLT bit, Request id
 reply counter
 time to first reply
NetRead status

Answer message
 Acnet header,
 { Status word,
 Answer data }

Acnet header
status word

This snapshot of the test program display serves as an example of several of its
features. It shows an example of requesting a 2-byte reading, a 2-byte setting, and
a 20-byte analog alarm block all from channel 0 in node 08. The FTD specification
indicates that the data is to be collected at intervals of 15 Hz (66 msec).

Parameter entry for data requests
The M bit is set for periodic requests. The request remains active until a cancel

message is sent. If the M bit is zero, the request is automatically cancelled after
update of the first set of reply data. The RQID is the request id that serves to

RET/SETDAT Test Page Mar 22, 1990 page 2

Enter up to three device specifications. The Property Index and the #bytes
requested/device are specified in decimal. The SSDN (SubSystem Device
Number) is entered in hex. It is a 4-word field that is normally extracted from the
central database given a property index and a device index. (The reference that
describes these terms more fully is Acnet Design Note 22.28.) To omit a device
spec, blank out the property index field.

The Property Index values of interest are:
1Analog alarm block
3Basic Control
4Basic Status
5Digital alarm block
7Extended status
12Reading
13Setting

The formats for the 4-word SSDN used in Linac are as follows:

idLng=2listype#

node#

Chan#/Bit#

—

listype#

node#

memory
address

idLng=3

or

These examples give the long ident forms for channels, bits and addresses. The
short form is also supported for backwards compatibility, where the idLng=1
word for channels and bits, and idLng=2 words for addresses.

The Frequency Time Descriptor (FTD) expresses the repetition period in 60 Hz
cycles. The REP is the repeat count for testing the timing for longer requests. It
merely repeats the same set devices to build a request with up to 3*REP request
packets, each of which requires 16 bytes in the network data request. Thus, if you
enter a count of 100 for a single device spec, the request message is more than
1600 bytes in length.

Interrupt anywhere in the parameter specification area of the screen (on rows 2–
8) to initiate the data request. The word ANSWERS in the response area of the
screen should be hi-lited to indicate the request is active. (If it is a one-shot
request, or if an error is returned, it may not stay hi-lited for long.) When the first
(or only) response is received, the elapsed time is displayed on the ANSWERS line
in milliseconds. This time is measured from just before the call to NetWrite until
just after the call to NetRead that returns the first response in the test program.

RET/SETDAT Test Page Mar 22, 1990 page 3
word ANSWERS. This is done for convenience in interpreting error codes, which
are negative numbers.

Other status replies that are shown are toward the right end of the screen. The
status return from NetOpen, which is called upon entry to the page, is given at
the end of the third line. Below that is the return from the call to NetWrite when
the request message was issued. Below that is the transmit status word that gives
the success of the network transmission. At the end of the ANSWERS line is the
status return from the call to NetRead which returns the reply data.

Cancelling data requests
Cancel an active request by an interrupt on the ANSWERS line. The hi-liting

will be removed as the cancel message is sent (a USM with bit#9 set in the Acnet
header flags word). (Note that an interrupt on this line when a request is not
active switches to the setting mode.) Leaving the page results in all active
requests being cancelled the next time a reply is received. This happens because
the application closes its network connection (via NetClose) upon exit.

Answer data viewing
Six lines are used to display answer data in hex with 6 words per line. The

byte value at the left shows the offset in bytes of the first word on the line. There
are three ways to adjust the starting offset for the block of answers.

The easiest way is to use the raise/lower buttons on the local console. It will
adjust the offset by 72 bytes (6 lines of 6 words each) at a time. If you advance too
far, it wraps to the start.

To adjust the offset so that the first word is one of the displayed data words,
merely interrupt under the word you want to be the starting word displayed.
Obviously, you can only move forward in this way.

The third way to adjust the offset is by typing in the desired offset in the first
characters of the first line of answer data and interrupting. Three characters can
be entered, even though only the least significant two characters can be displayed
due to the screen’s limited number of characters per line.

The entire response message is displayed, beginning with the 9-word Acnet
header. (For an error response, this is all you get.) This is followed by a reply
packet for each device, consisting of an error status return code followed by the
answer data for that device, padded to an even number of bytes.

Details of the example response
The first 9 words are the Acnet header. The first word shows that it is a reply

RET/SETDAT Test Page Mar 22, 1990 page 4
to make a request to itself. (If it didn’t do that, it would always require two nodes
to do the test.) A by-product of this is that the xmitStat value shown at the end of
the fifth line is -2, indicating “address not recognized,” which in this case is
normal.

The next two words of the Acnet header are the destination task name, which for
Acnet data requests is RETDAT, in the Radix-50 encoding commonly used by
PDP-11 computers. The source task id is 6, which denotes the table index in the
Network Connect Table returned by the call to NetOpen. The request id is
followed by the message size word, which is the total size of the response
message including the Acnet header itself.

The Acnet header is followed by the reply packets. In each case, the error status
word is zero, indicating no errors. Both the reading and setting of the device are
0CD0. The analog alarm block includes the nominal and tolerance values of 0CCC
and 00CC, respectively. The value 0056 is the trip counter.

The time response value for this example is 5.5 msec. This seems to be a common
value for a one-shot minimal data request in any of the three protocols supported
by the Local Station software. As of the time the snapshot was taken, there had
been 42 replies received.

RET/SETDAT Test Page Mar 22, 1990 page 5
Switch between request/setting modes

Interrupt on the ANSWERS line to switch into setting mode from request mode.
Interrupt on the SET-ACK line (same one) to switch back to request mode from
setting mode.

Display page layout—setting mode

 RET/SETDAT TEST 03/21/90 1124
PI #BY SSDN
13 2 0102 0008 0000 0000 0
 0
 -2
REP= 1 RQID=1788
1234 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
SET-ACK 0 1 5 MS 0
00 0004 0000 0800 0800 9C77 3C19
0C 0006 1788 0012

Repeat count

Setting data

Prop Index,
#bytes, SSDN

NetOpen status
NetWrite status
xmitStat
Request id
 reply counter
 time to ack reply
NetRead status

Acknowledgment
Acnet header only

Acnet header
status word

Parameter entry for settings
The device spec data is entered the same way as for requests. In addition, the

setting data may be entered. There are 24 bytes of setting data available. If more
setting data is required to satisfy the device specs, the setting data words are
simply repeated. When the REP (repeat count) is more than one, the setting data
is re-used starting at the beginning for each repetition. No FTD value nor M bit
value is used for settings.

Setting acknowledgment
The reply to a setting is the status-only acknowledgment message. It consists

only of the Acnet header with the status code in the second word. For the
example shown, The 0004 indicates a reply messages, the destination node and
source nodes are both node 08 as before, the destination task name was SETDAT
in Radix-50 encoding, the source task id was 6, the request id was 1788, and the
total length of the reply message is 18 bytes. The time to respond was 5 msec.

Serial Server
Local Station application

Oct 17, 1989
Overview

The Serial Server facility for the Fermilab D0 VME systems provides for a serial RS–

232 connection to the Token Ring network of VME stations. A computer plugged into

the serial port of any VME station can request data from any devices in the entire

network of stations. In addition, settings can be made to any device in the network.

These two commands are supported with the full generality inherent in the VME station

software, the only real limitation being that of the serial baud rate. One can program any

application in a familiar environment and yet have access to all the data in the system.

The Serial Server is implemented as an application program running on a VME station.

The station used does not have to be the same station providing the serial port, although

that might be a likely. Since it is an application, however, the server functions will stop if

one leaves the application page. Currently there is a limitation of six simultaneously

active requests supported by the server. A request for data can be a one-shot request, or

it can be repetitive. The maximum repetition rate is 15 Hz, although one may reach the

baud rate limit soon at that rate if too much data is being requested. The serial data is

returned via a spooling mechanism using the available dynamic memory, so that the full

baud rate can be delivered.

Message encoding

The command messages used to request data and make settings are of the same

format as is used by the Token Ring network, but it is expressed in an ASCII encoding

method based upon the Motorola S-record object format. That format provides for an S0

header record, followed by any number of S1 data records comprising the content of the

block, followed by an S9 record which terminates the block. Each record includes a

length byte, a two-byte “Load Address” (LA), any content bytes, and a checksum byte,

all expressed in hexadecimal ASCII at two characters per binary byte of data. (Note that

hex digits A–F are expressed in upper case only.)

The S0 header record LA is used in a response to indicate an error when nonzero. The

header content data bytes allow the user system to tag the request with a request-id,

which may be used to match the returned data block with the request. The S9

terminating record uses the load address field to specify the number of S1 data records

included in the block. The receiver can test this count to insure that no data records were

lost in the block transmission. In order to use a format which is incompatible with the

Motorola format, the non-hex character S is expressed as a lower case s. This is to insure

that such serial records do not mistakenly get used as input to the Download application

program.

Examples

An example of a request for a single reading of channel 04:000 (channel 0 in system

4) to be returned at a 1 Hz rate is as follows: (Note that the spacing indicated here is to

aid the eye for illustration only.)

Serial Server Oct 17, 1989 page 2
s9 03 0001 FB<CR>

The first record specifies a request-id of 0001—it may be any value up to 10 bytes long.

The second record comprises the entire request command. The 2001 identifies the

command as a request-for-data using list 1, the 0F is the count of 15 Hz cycles

representing 1 Hz repetition rate, the 01 is the number of listypes (which specify the

type of data requested), the 2001 specifies 2 bytes per ident and only one ident in the

request, the 00 is listype 0 (A/D readings), the 02 means that two bytes are requested,

and the 0400 is the (short) ident for channel 0 of system 4. The third record includes the

0001 to indicate the count of s1 records in the block.

The response to be expected from this command might be as follows:

s0 05 0000 0001 xx<CR>
s1 09 0000 0001 0000 4000 xx<CR>
s9 03 0001 FB<CR>

The header record specifies 0000, signifying no errors were detected in the previous

request command. (If the request command was received and recognized, but something

was wrong with it, the reply would have consisted only of an s0 record with a nonzero

LA field.) The 0001 echoes the request-id sent in the request command. The s1 record

has a 0001 to indicate that it is an answer message (the hi nibble=0), and that the list

number =1. The next 0000 word means no errors from the data collection system. The

word of 4000 is a hypothetical reading value, which would represent here one-half of

full-scale, or 5 volts at the A/D input. The s9 record again provides the s1 record count.

In almost all of the above records, an xx is shown to signify the checksum byte. It is

computed by summing the binary bytes (not the ASCII character codes) beginning with

the record length byte and ending with the last data byte, and one’s complementing the

result to form the byte which is then ASCII-encoded. (As an example, the checksum for

the s9 record above is FB.) Notice that the receiver when checking for checksum errors

merely has to sum all the bytes mentioned above plus the received checksum byte. If the

result is FF, the checksum is correct.

Serial Server Oct 17, 1989 page 3

An example of a setting command might be to set channel 7 in system 4 to one volt. The

setting command would look like this:

s0 05 0000 0056 xx<CR>
s1 0B 0000 3001 01 02 0407 0CCC xx<CR>
s9 03 0001 xx<CR>

The 0056 value in the s0 record is the arbitrary request-id. The s1 record shows a 3001,

which signifies a setting command, with an ident length of one word. The 01 byte is the

setting listype #, and the 02 means we are sending two bytes of data. The 0407, of

course, represents the channel ident (short form) specifying channel 7 in system 4. The

data value is 0CCC, which is one-tenth of full scale, or 1 volt. The s9 record is as before.

Serial Server Application

Here is the application page format of the Serial Server as displayed on the small

consoles of the VME systems:

S SERIAL SERVER 01/31/87 1332
INPUT SYS:2 #RECORDS= 21
*ACTIVE #ERRS= 0
 L REQS NB ANSWERS NB E
*1 12 36 1230 16
 2 1 144 1 308
 3
 4
 5
 6

S00500000003xx 
S10D000020020001200100020700xx  ⇒ data request
S9030001FB 
S1090000000200005678xx ⇒ response

(This sample is purely illustrative and does not represent completely consistent example

data values.)

Upon entry to the page, the second line indicates *ACTIVE. To change the node whose

serial port is used for the serial server, enter the system number of the station which is

attached to the serial port (if changed), and with the cursor on the 2nd or 3rd line, press

the interrupt button. The second line will indicate *ACTIVE as above and will remain so

until one leaves the page, which will terminate operation of the server. The rest of the

page merely shows diagnostics of the server operation.

The number of records received from the user system and the number of error records

detected is shown. The table shows diagnostic values for each of the six possible active

requests which can be handled by the server. The * before the request number indicates

Serial Server Oct 17, 1989 page 4
number of bytes in the returned answers. The last field shows any error status of the

data collection system.

The last lines display a snapshot of the latest request that was received. The first 3 show

the header record, the first data record, and the terminating record of the request. The

last record shows the first data record of the most recent answer response, which will

continue to update until a new request is received, when these 4 lines will change to give

diagnostics for that request.

Baud Rate Timing

To get an idea of what the baud rate timing limitation is, assume that 9600 baud is

used, and we request the single word of data as described in the first example. The

number of ASCII characters is the answer response is 52, assuming that <CR> represents

both a carriage return and a linefeed character. At about 1 ms per byte, this amounts to

52 ms of serial time—quite busy at a 15 Hz rate but rather comfortable at 1 Hz. Further,

if we requested a set of 20 readings—again originating from any stations in the

network—the time would be about 140 ms, assuming that the response block contained

two s1 records. And if we requested 100 words, it would require about 500 ms. Of

course, operation at 19.2K baud would halve these figures. Therefore, we have that the

serial time for n data words=

(48+4.6n) ms @ 9600 baud

(24+2.3n) ms @ 19.2K baud

Settings Log Page
Page application

Fri, Sep 9, 1994

The settings log for the local station/IRM is implemented using a data
stream. A 16-byte record is written into the data stream when a setting is
successfully made. This page application facilitates viewing the setting log
contents. It is based strongly upon a similar page application that views
network frame diagnostics, also written into a data stream, in that case, for
each network frame received or transmitted. A new feature supports
display of Acnet setting log records in the same data stream.

Display layout
C SETTINGS LOG 08/12/94 0810
NODE<0508> #RCVD= 32 LIST<0000>
NODE=0000 - LTNB=0000 TIME=0000
0508 2904 002241F6 0806:06-10+28
0508 2904 002241F6 0806:06-11+28
0508 2904 002241F6 0806:06-12+28
0508 2904 002241F6 0806:06-13+28
0508 2904 002241F6 0806:06-14+28
0508 2904 002241F6 0806:07-00+28
6041 1502 00C10100 0806:07-00+31
0623 2302 0006002D 0806:11-12+29
0610 2306 00000812 0807:00-00+29
0610 2306 00000812 0808:00-00+29
0610 2306 00000812 0809:00-00+29
0610 2306 00000812 0809:59-14+44

Fields listed above are the source node# of the setting, the listype# and
#bytes shown as two bytes forming a word, the channel# and data shown
as two words forming a long word, and the time of completion of the
setting action. As in the network frame diagnostics, the time is expressed
in hours, minutes, seconds, 15Hz cycles, and milliseconds within the
current cycle.

In the example of node 0508 setting diagnostics shown, node 0508 itself
initiated settings for analog channel 0022 using listype#41 (engineering
units floating point) with 4-byte data, where the first word of the floating
point setting data was 41F6. These settings were set every 15 Hz cycle
until a setting to clear the enable bit for the local application causing the
settings was disabled by using listype#21 to toggle Bit# 00C1. (01 is the
digital control type# for toggle.) Node# 6041 is a pseudo node# that
indicates the setting command was received via UDP/IP. The next line
shows a setting of “generally interesting data” with byte offset 06 that is
used for synchron iz ing the FTPMAN cycle counter with Tevatron clock
event 02. Four minutes of time-of-day settings from node 0610 also access
“generally interesting data.”

Settings Log Page p. 2
Operation

Interrupt on the second row to initiate a one-shot data request in
order to capture the most recent setting records from data stream #1 from
the node# between the “<” and “>”. The number after RCVD shows the
number of records received in response to that one-shot request. If the
LIST field is nonzero, then send a serial listing of the same diagnostic
records displayed to that indicated node#.

Interrupt on the third row to modify the filter parameters that select from
the captured diagnostics above. Filtering can be done on the source node#,
on the listype#/#bytes, and on the time. (Obviously, only hours and
minutes can be specified for the time filter.) Characters that denote the
type of filtering for each filter are used where the “=” sign is indicated. Use
“=” to mean equality, “!” to mean inequality, “>” to mean greater than or
equal to, and “<” to mean less than. When a filter value field is 0000, that
filter is disabled. If more than one filter is enabled, the “AND” of the filter
conditions is meant.

When a list of diagnostic lines is displayed on the screen, use the
raise/lower buttons to scroll by pages forwards or backwards through the
list. Using a one-shot request suitable for a data stream of size 2K bytes,
one can capture and display/list up to 124 setting diagnostic records.

Listing format
C SETTINGS LOG 08/12/94 0856
NODE<0508> #RCVD= 124 LIST<0576>
NODE=0000 - LTNB=0000 TIME=0000
SrcN LtNb ChanData HrMn:Sc-Cy+ms
0508 2904 002241F6 0806:06-10+28
0508 2904 002241F6 0806:06-11+28
0508 2904 002241F6 0806:06-12+28
0508 2904 002241F6 0806:06-13+28
0508 2904 002241F6 0806:06-14+28
0508 2904 002241F6 0806:07-00+28
6041 1502 00C10100 0806:07-00+31
0623 2302 0006002D 0806:11-12+29
0610 2306 00000812 0807:00-00+29
0610 2306 00000812 0808:00-00+29
0610 2306 00000812 0809:00-00+29
0610 2306 00000812 0809:59-14+44

This is an excerpt from the complete 124-line listing showing the same
records displayed in the example above.

Acnet settings log

Settings Log Page p. 3
be provided at the application level for logging setting activity of Acnet
devices. For local stations/IRMs, this means such support is needed for
page applications such as the parameter page and the analog descriptor
page. The parameter page can initiate settings for D/A’s, nominal and
tolerance values, and digital control. The analog descriptor page can initiate
settings of alarm flags. Both pages have the device name available for log
reporting. The method is more fully described in the document Settings
Log Implementation as well as the document Settings Log LA.

The afore-mentioned Acnet records are written into the same data stream.
This settings log page application displays them with a slightly different
format, as shown in the following example:

C SETTINGS LOG 09/09/94 1004
NODE<0622> #RCVD= 4 LIST<0000>
NODE=0000 - LTNB=0000 TIME=0000
0622 0102 0424F333 L2GADJ-SET
0622 1602 00900101 K2LPGN-BCTL
0622 1602 00900100 K2LPGN-BCTL
0622 0102 00900021 K2LPGN-SET

In place of the time, which is not recorded for the Acnet record format, is
the device name and Acnet property. The display, or listing, shows the
device name and the Acnet property using these abbreviations:

Setting SET

Binary control BCTRL

Analog alarm block ANAB

Digital alarm block DGAB

In the example shown, device L2GADJ was set to a value F333, two binary
control actions were performed on device K2LPGN, followed by a setting of
the same device to the value 0021.

With the normal settings records entered into the same data stream,
including closed loop setting activity, it’s expected that the queue will wrap
in a short time. The Acnet records are logged to a central setting log server,
so such entries will more likely be viewed there. The other setting records
will be useful as a diagnostic tool for observing settings happening very
recently, much as the network frame diagnostic is used for observing
recent (often very recent) frame activity.

 Settings Log LA
Settings report for Acnet

Wed, Sep 7, 1994

Introduction
This document describes a local application that acts as an interface

between the settings log data stream and the Settings Log Server
implemented in Acnet via a task running on node cfss.fnal.gov that accepts
a special protocol via a UDP port# used for that purpose. Setting records of
a special format are written into this data stream from page application
that run in a local station/IRM.

LA parameters
Example parameters as shown on Page E for the SLOG LA are as

follows:

ENABLE B<00C4> SLOG ENABLE Enable Bit#

DB PREFX <4C3A> ‘L:’
IPADR HI <83E1> cfss.fnal.gov IP address
IPADR LO <797A> 131.225.121.122

RPT DLY <000A> 10 seconds report delay

REM DLY <0258> 600 seconds removal delay

LISTNUM <000C> list# for data stream data request

The DB PREFX parameter is a two-character ascii prefix to all 6-character
device names for preparing the settings report message that must include
the 8-character device names used in Acnet. For example, the Linac device
name prefix is “L:”. Para meters IPADR HI and IPADR LO specify the IP
address for node cfss.fnal.gov. This node houses the settings log server
to which all settings reports are sent for logging. The RPT DLY parameter is
the “report delay” in seconds. It specifies the delay after a setting is made
before a report will be sent. Its purpose is to allow a chance for the setting
activity of other devices to be queued for inclusion in a single report
message. The REM DLY parameter is the “removal delay” in seconds, after
which time the queued entry is removed. During this time, additional
settings of the same property made to the same device will not be re-
reported. Its purpose is to reduce network traffic resulting from
“knobbing” an analog device. The LISTNUM parameter is used for the internal
data request that monitors the contents of the settings log data stream.

Settings reporting
Upon initialization, the SLOG LA allocates a settings queue into which

setting log activity that relate to Acnet device names are queued for
eventual inclusion in settings log reports. When a setting is observed by
the LA in monitoring the records in the settings log data stream, its

Settings Log LA p. 2
Analog setting property

1 setting
7 relative “knob” setting
39 delta setting
41 engineering units setting
44 engineering units delta setting

Basic control property
22 digital control via Chan

Analog alarm block
2 nominal value
3 tolerance value
4 alarm flags w/o $4000 bit
42 engineering units nominal
43 engineering units tolerance
57 D0 alarm parameters

Digital alarm block
2 nominal value
3 mask
4 alarm flags w/ $4000 bit

A settings log queue entry is as follows:
RECORD

dName: PACKED ARRAY[1..6] OF Char; { device name }

sMask: Byte; { set properties mask }

rMask: Byte; { reported properties mask }

remov: Integer; { time out until entry removed from queue }

nRprt: Integer; { number of reports }

nSets: Longint; { number of settings to this device }

END;

The setting records monitored are only those that are sent from an
application such as the parameter page or the analog descriptor page, as
only such records include a device name. Assuming that the queue is
empty, and a setting of one of the above listypes is detected, then get the
analog name from the channel descriptor. If it is valid, then build a new
entry in the queue. Set a bit in the sMask field according to the setting
property used. Set the rMask field to zero, as no properties have yet been
reported. Set the remov field to the REM DLY parameter. Set the global report
delay timer rDTimer to the RPT DLY parameter.

Settings Log LA p. 3
queue, set the appropriate bit in the sMask field, then check whether sMask

= rMask. If they are equal, then this property has already been reported to
cfss in the last removal delay period, so this one can be ignored. If they are
not equal, and the rDTimer is zero, then set it to the RPT DLY parameter to
insure prompt reporting of the new-property setting.

Every second, decrement the rDTimer, if nonzero. When zero is reached,
review all queue entries and build a report message that includes all
unreported properties of all devices in the queue.

Every second, also decrement the remov field in each entry. If it reaches
zero, and rMask = sMask, all properties have been reported, so remove the
entry from the queue. If it reaches zero, and rMask <> sMask, then some
properties for this device have not yet been reported, so reset the remov
field to twice the RPT DLY parameter. The rDTimer should already be active
in this case. This extra time should give a chance for the unreported
properties to be reported before the entry is removed.

When issuing a report message, the LA uses the acknowledgment typecode
option for the cfss-based server. This causes the server to return an
acknowledgment, which is used to set the rMask bits according to the mask
that was reported. If there is no acknowledgment received within a
second, then re-issue the report up to two times before giving up.

Device name prefix
The prefix used for all Linac devices is “L:”. Devices at the MRRF test

station are “Z:”. From the local station application point-of-view, the
correct prefix cannot be known. So, for all reports issued by a given
station, a parameter of the LA is used as a prefix. In cases where a target
device is in another node whose devices use a different prefix, the report
will indicate the wrong device name. For a device with a name which the
setting log server cannot find in the Acnet database, the server will
perform a search throughout the database looking for a match on the last 6
characters of the device name in order to complete the setting log record.

Station identification
Each station has a 16-character text title that usually shows where it

is located. For example, node 0508 has the title “LINAC SUN ROOM “. In the
settings log protocol, there is an 80-character owner field for each report
message. Besides the node#, the node’s title is included, normally
identifying the local station’s location.

TFTP Implementation
Trivial File Transfer Protocol Server

Tue, May 17, 1994

This note describes the support for the TFTP (Trivial File Transfer Protocol) for the local
stations. Local stations do not have mass storage, but they have non-volatile memory
that is used for the storage of local and page applications. It is therefore useful to
consider this UDP-based standard protocol as a way to distribute application programs
to the local stations. A motivation for doing this, rather than the present way of
downloading new programs via the serial port, is that it makes it easier to access files
from host machines, as modern hosts support this standard protocol. Besides, it’s faster.

There are two sides to the support needed: client and server. The client side, if imple
mented for the local station, would be a page application. Its implementation on a
Macintosh, as recently done by Bob Peters, is an MPW tool. The client allows a user to
specify a program name and a target IP address. For named programs, the name is an 8-
character string, such as LOOPGRAD, that gives both the 4-character type name as well as
the 4-character program name of that type. The client initiates either a read or a write
transfer. The server side accepts the read/write transfer that is initiated from a client. In
addition, support is included for access to the system code of a local station, or more
generally, for access to an arbitrary block of memory, thus providing a kind of cheap
save/restore facility.

Client logic
A read transfer copies a named program, say, from the target IP address to the

initiating node, whereas a write transfer copies a named program from the initiating
node to a target IP address. Blocks of 512 bytes are sent, receiving an acknowledgment
for each block, until less than 512 bytes remain, when 0–511 are sent in the final block.

For a write transfer, the size of the file is known locally, so it is easy to source the file to
the target IP address. Blocks are sent 512 bytes at a time, until the final one that is from
0–511 bytes in length tells the receiver (server) that it is the last. Each block is acknow
ledged by the server. If no acknowledgment is received, then the block is resent. Check
sums for named programs are handled by the server, as the protocol does not support
them. Acknowledgments are considered enough to make the transfer itself reliable.

Server logic
The server is a local application that supports both read and write requests. A

read request received by the server means that the server should transmit the program
to the client. Again, the server has an easy time sourcing such requests, since the size of
the program is known locally. If no acknowledgment is received, the server re-transmits
the last block sent. After the final block is sent, the server activity may linger regarding
that transfer to allow for the fact that the acknowledgment might not be received for the
last block. Only after the acknowledgment has been received, or the server times out the
transfer, should the server “close the connection.”

TFTP Implementation Mon, Oct 4, 1993 p. 2
A write request received by the server means that a program is being copied to the
server node. This means that the transferred file must be read into temporary memory
at first. At the conclusion of the transfer, the size is known, so the appropriate settings
can be made to build the resulting program file into the non-volatile memory. The
solution to this problem is to use dynamic memory to allocate each received block of up
to 512 bytes. When the last block has been received, settings can be made from each
allocated block of data and the block freed.

Memory access, System code “file”
A filename of the form “MWxxxxxxxx.ssssss” can be used to access memory

data. The xxxxxxxx is the starting address and ssssss is the number of bytes of mem
ory to copy. MW accesses the memory as words, MB as bytes, and ML as longwords. The
specified address can be less than eight hexadecimal digits, and the size can be less than
the six digits shown. The special name “SYSTEM” can be used to access the system code
“file” as memory words. This name can be installed in 162bug’s network boot para
meters for use with the automatic network boot procedure following system reset.

Uses
Besides booting the system code via 162bug, named program access may be used

to build an archive of such programs on a workstation’s disk. The memory access can
allow save/restore of blocks of non-volatile memory. The main use for the write sup
port in the server is to allow sending system updates to a development target node
during program development and debugging. The usual download page can be used to
disseminate this code to other local stations, individually or via multicast addressing.
Note that time-stamping of named programs is done by the server upon reception, so if
a new version is only targeted to a single test node, and then disseminated from there to
other nodes, the time-stamp can serve as a “version date.”

Performance
The 162bug can accomplish the network boot function of its startup operation in

about 2 seconds, a small part of the total of approximately 20 seconds required. The
Macintosh client can transfer the system code in about 5 seconds to the TFTP server
local application called LOOPTFTP. As a replacement for use of a serial port to download
a new version of the system code, even at 19200 baud in 4 minutes, it’s great. In
addition, the S-record text file does not have to be generated. For named programs, the
time is also much improved, and the S-record file generation is no longer needed.

TFTP Implementation Mon, Oct 4, 1993 p. 3

Data request “filename” option (not implemented)
Consider support of a general data request protocol layered on top of TFTP. To

keep the filename short, use only single listype/single ident requests. Also, to simplify
the problem, consider only one-shot requests. The filename might have the following
format: LTxx-xxxx-xxxx.ssss. The xx fields would specify the listype, the source
node, and the ident in hex. The ssss could specify the requested number of bytes. (The
fields could have a different number of hex digits than shown here.) When such a
filename is received, the server would make a data request. When a reply is received, it
would return the data. In case the number of bytes requested is more than 512 bytes, a
temporary array will be needed to hold the data. Therefore, a limit of one such active
request could be supported at one time. Note that a request for less than 512 bytes of
data will result in a single reply datagram that will be acknowledged exactly once. Since
a host will write a file every time such a response is received, this may not work at a
high rate. But at least it can capture data using only a standard protocol.

Vacuum Units Conversion
Local application
Mon, Sep 20, 1993

Ion pump power supply currents are used to measure vacuum in the cavities of the
Linac upgrade accelerator modules. Vacuum readings in Torr are non-linear with
respect to the readings of the ion pump power supply currents. This note describes a
simple implementation for support of the non-linear conversion, so that hosts can scale
the vacuum readings linearly.

The format of the parameters to specify for this units conversion is as follows:

 E LOC APPL PARAMS 09/20/93 2129
 NODE<0627> NTRY<12>
 NAME=VACT CNTR=0520
 TITL"VACUUM TORR CONVERSION "
 SVAR=00035B22
 ENABLE B<00B2> VACT-2 ENABLE
 FORMULA1 <0002>
 INPUT1 C<01C2> V1VPAB V
 OUTPUT1 C<0362> V1VTAB -9T
 NCHANS1 <0006>
 FORMULA2 <0002>
 INPUT2 C<01D0> V4VPAB V
 OUTPUT2 C<0368> V4VTAB -9T
 NCHANS2 <0008>
 <0000>

Up to two conversion sets can be specified for each instance of this local application,
called VACT. Each specification gives the formula index#, the initial input channel#, the
initial output channel#, and the number of sequential channels to be so converted. The
output channels are dummy channels whose 16-bit reading words are updated to reflect
the results of the calculations. The scale factors for these channels are chosen to suitably
fit the expected range of the result with the needed resolution. Since vacuum pressure
tends to vary over a wide range, a compromise may need to be made.

In the initial implementation, the scale factors of the dummy channels used to hold the
linearized readings are fs=3276.8 and off=3276.8. This gives a range of 0–6553.6 in units
of 10–9 Torr, or a maximum value of 6.5x10–6 Torr. The least bit resolution in the 16-bit
word is 10–10 Torr.

Vacuum Units Conversion Mon, Sep 20, 1993 p. 2
The formulas used to fit the calibration data for the ion pump power supplies are as
follows, where v is the input reading in volts:

Formula index# Formula Used for:

1 If v >= cThr then one 230 l/sec ion pump

vacuum:= s*Exp(c10 + v*c11);

If v < cThr then

vacuum:= s*Exp(c20 + v*(c21 + v*c22));

2 If v >= dThr then two 230 l/sec ion pumps

vacuum:= s*Exp(d10 + v*d11);

If v < dThr then

vacuum:= s*Exp(d20 + v*(d21 + v*d22));

3 30 l/sec ion pump

vacuum:= s*Exp(t10 + v*t11) + Exp(t20 + v*t21);

Units of vacuum are 10–9 Torr, so s=1.0E9.
Coefficients used initially in the program are as follows:

cThr= 3.1; c10=–10.568; c11=–1.429; c20=10.972; c21=–14.797; c22=2.070;

dThr= 3.2; d10=–11.313; d11=–1.405; d20=–9.432; d21=–0.118; d22= 0.577;

t11= –1.535; t10= 5.09*t11; t21= –38.4; t20= –2.38*t21;

Of course, additional formula indexes can be defined using more constants by changing
the local application source code.

In the initial implementation, readings are updated at 15 Hz. For 16 channels of
conversion of 230 l/sec ion pumps, about 2.5 ms are required for the 68020-based local
stations. Since these are vacuum readings, a more leisurely update rate could be
adopted to save time. Also, since the vacuum signals from node 627 are also wired to
the individual klystron stations in nodes 620–626, each station could run its own copy of
VACT to spread the computing load.

The source code is 250 lines of Pascal, executing in 7K bytes.

	Accelerating Module Conditioning
	ACNAUX Functions
	Alarm-based Signals
	Beam Summing
	DAC0 and DAC1 Control
	Data Capture Logic
	Delayed Reset After Trip
	DirectNET PLC Access
	Domain Name Server Access
	HUMBUG for Local Stations
	Klystron RF Gradient Regulation
	Local Applications Table
	Local Control Box
	Local Station Additions for Acnet
	Network Time Protocol Client
	NonLinear Units Conversion
	Resistor-Temperature Conversion
	RET/SETDAT Test Page
	Serial Server
	Settings Log Page
	Settings Log LA
	TFTP Implementation
	Vacuum Units Conversion

